Curvature identities

From Manifold Atlas
(Difference between revisions)
Jump to: navigation, search
(Created page with "{{Authors|Jost Eschenburg}}{{Stub}} == Introduction == <wikitex>; Let $M$ be a smooth manifold and $E$ a vector bundle over $M$ with [[Covariant derivative|covariant derivativ...")
m
(2 intermediate revisions by one user not shown)
Line 7: Line 7:
$\phi : \R^n_o \to M$ where $\nabla_i = \nabla_{\phi_i} = \nabla_{\partial_i\phi}$.
$\phi : \R^n_o \to M$ where $\nabla_i = \nabla_{\phi_i} = \nabla_{\partial_i\phi}$.
By definition,
By definition,
\beq \label{Rij}
+
\begin{equation} \label{Rij}
R_{ij} = -R_{ji}.
R_{ij} = -R_{ji}.
\eeq
+
\end{equation}
If $E$ carries an inner product $\langle \,,\,\rangle $
If $E$ carries an inner product $\langle \,,\,\rangle $
on each of its fibres and if $\nabla$ is {\it metric}, i.e.\ for any two section
+
on each of its fibres and if $\nabla$ is ''metric'', i.e. for any two section
$s,\tilde s\in \Gamma E$ the inner product satisfies the product rule
$s,\tilde s\in \Gamma E$ the inner product satisfies the product rule
$$
$$
Line 36: Line 36:
\nabla_i(R_{jk}) = [\nabla_i,R_{jk}] = [\nabla_i,[\nabla_j,\nabla_k]].
\nabla_i(R_{jk}) = [\nabla_i,R_{jk}] = [\nabla_i,[\nabla_j,\nabla_k]].
$$
$$
Thus we obtain an identity for $\nabla R$, sometimes called {\it Second Bianchi Identity}
+
Thus we obtain an identity for $\nabla R$, sometimes called the ''Second Bianchi Identity''
\begin{equation} \label{BII}
\begin{equation} \label{BII}
(\nabla_iR)_{jk}+(\nabla_jR)_{ki}+(\nabla_kR)_{ij} = 0.
(\nabla_iR)_{jk}+(\nabla_jR)_{ki}+(\nabla_kR)_{ij} = 0.
Line 42: Line 42:
When $\nabla$ is a torsion free covariant derivative on the tangent bundle $TM$, there is
When $\nabla$ is a torsion free covariant derivative on the tangent bundle $TM$, there is
in addition the {\it First Bianchi Identity}: Putting $R_{ijk} = R_{ij}\phi_k$, we have
+
in addition the ''First Bianchi Identity'': Putting $R_{ijk} = R_{ij}\phi_k$, we have
\begin{equation} \label{BI}
\begin{equation} \label{BI}
R_{ijk} + R_{jki} + R_{kij} = 0 .
R_{ijk} + R_{jki} + R_{kij} = 0 .
Line 69: Line 69:
$$
$$
Equations (\ref{Rij}), (\ref{Rkl}), (\ref{BI}), (\ref{block}) are the algebraic identities for the
Equations (\ref{Rij}), (\ref{Rkl}), (\ref{BI}), (\ref{block}) are the algebraic identities for the
curvature tensor of the [[Levi-Civita connection|Levi-Civita derivative]], the {\it Riemannian curvature tensor}.
+
curvature tensor of the [[Levi-Civita connection|Levi-Civita derivative]], the ''Riemannian curvature tensor''.
By (\ref{Rij}), (\ref{Rkl}), (\ref{block}), a Riemannian curvature tensor
By (\ref{Rij}), (\ref{Rkl}), (\ref{block}), a Riemannian curvature tensor
can be viewed as a section of $S^2\Lambda^2TM$, a symmetric bilinear form on $\Lambda^2TM$.
can be viewed as a section of $S^2\Lambda^2TM$, a symmetric bilinear form on $\Lambda^2TM$.
Line 81: Line 81:
[[Category:Definitions]]
[[Category:Definitions]]
+
[[Category:Connections and curvature]]

Latest revision as of 10:46, 15 May 2013

The user responsible for this page is Jost Eschenburg. No other user may edit this page at present.

This page has not been refereed. The information given here might be incomplete or provisional.

1 Introduction

Let M be a smooth manifold and E a vector bundle over M with covariant derivative \nabla. Let R_{ij} = R(\phi_i,\phi_j) = [\nabla_i,\nabla_j] be the curvature tensor with respect to a local parametrization \phi : \R^n_o \to M where \nabla_i = \nabla_{\phi_i} = \nabla_{\partial_i\phi}. By definition,

(1)R_{ij} = -R_{ji}.

If E carries an inner product \langle \,,\,\rangle on each of its fibres and if \nabla is metric, i.e. for any two section s,\tilde s\in \Gamma E the inner product satisfies the product rule

\displaystyle  	\partial_i\langle s,\tilde s\rangle  = \langle \nabla_is,\tilde s\rangle  + \langle s,\nabla_i\tilde s\rangle \,,

then the expression R_{ijkl} = \langle R_{ij}\phi_k,\phi_l\rangle is skew symmetric also in the last two indices:

(2)R_{ijkl} = -R_{ijlk}.

Now suppose that on the tangent bundle TM there is another covariant derivative \nabla which is torsion free, \nabla_i\phi_j = \nabla_j\phi_i. Then the tensor derivative \nabla R of R is defined:

\displaystyle    (\nabla_iR)_{jk} = \nabla_i(R_{jk}) - R(\nabla_i\phi_j,\phi_k) - R(\phi_j,\nabla_i\phi_k).

Abbreviating R(\nabla_i\phi_j,\phi_k) = (ij,k) (symmetric in the first two indices i and j), we have (\nabla_iR)_{jk} = \nabla_iR_{jk} - (ij,k) + (ik,j), using the antisymmetry (1) and the torsion freeness. Now the cyclic sum of the last two

terms vanishes:
\displaystyle -(ij,k)+(ik,j)-(jk,i)+(ji,k) - (ki,j)+(kj,i) = 0.
But the cyclic sum of the first term vanishes also by Jacobi identity, since the tensor derivative of
Tex syntax error
is
\displaystyle   	\nabla_i(R_{jk}) = [\nabla_i,R_{jk}] = [\nabla_i,[\nabla_j,\nabla_k]].

Thus we obtain an identity for \nabla R, sometimes called the Second Bianchi Identity

(3)(\nabla_iR)_{jk}+(\nabla_jR)_{ki}+(\nabla_kR)_{ij} = 0.

When \nabla is a torsion free covariant derivative on the tangent bundle TM, there is in addition the First Bianchi Identity: Putting R_{ijk} = R_{ij}\phi_k, we have

(4)R_{ijk} + R_{jki} + R_{kij} = 0 .

In fact,

\displaystyle  	\left\{\begin{matrix} & R_{ijk} \cr + & R_{jki} \cr + & R_{kij}\end{matrix}\right\}\ \  	=\ \left\{\begin{matrix} 	&\nabla_i\nabla_j\phi_k &-& \underline{\nabla_j\nabla_i\phi_k} \cr 	 + &\underline{\nabla_j\nabla_k\phi_i} &-& \underline{\underline{\nabla_k\nabla_j\phi_i}} \cr 	 + &\underline{\underline{\nabla_k\nabla_i\phi_j}} &-& \nabla_i\nabla_k\phi_j	\end{matrix}\right\} 	\ \ =\ \ 0

An algebraic consequence is the block symmetry:

(5)R_{ijkl} = R_{klij}

In fact, putting ij|kl := R_{ijkl} and applying (4), (1), (2) we obtain (expressions with equal parentheses cancel each other):

\displaystyle  0 = \left\{\begin{matrix} \ \ \,{ij|kl} \cr +\, (jk|il) \cr +\, [ki|jl] \end{matrix}\right\} +  \left\{\begin{matrix} \ \ \,{ji|lk} \cr +\, \langle il|jk\rangle  \cr + \{lj|ik\} \end{matrix} \right\}- \left\{\begin{matrix} \ \ \,{kl|ij} \cr +\, \langle li|kj\rangle  \cr +\, [ik|lj] \end{matrix} \right\}-  \left\{\begin{matrix} \ \ \,{lk|ji} \cr +\, (kj|li) \cr + \{jl|ki\} \end{matrix}\right\} 	=  2(ij|kl - kl|ij)

Equations (1), (2), (4), (5) are the algebraic identities for the curvature tensor of the Levi-Civita derivative, the Riemannian curvature tensor. By (1), (2), (5), a Riemannian curvature tensor can be viewed as a section of S^2\Lambda^2TM, a symmetric bilinear form on \Lambda^2TM. The antisymmetric 4-forms form another subspace \Lambda^4TM\subset S^2\Lambda^2TM, and the additional identity (4) characterizes precisely the orthogonal complement of \Lambda^4(TM) in S^2\Lambda^2(TM).

2 References

Personal tools
Namespaces
Variants
Actions
Navigation
Interaction
Toolbox