Parametric connected sum
This page has not been refereed. The information given here might be incomplete or provisional. |
Contents |
1 Introduction
Parametric connected sum is an operation on compact connected n-manifolds and
equipped with codimension 0-embeddings
and
of a compact connected manifold
. It generalises the usual connected sum operation
which is the special case when
is the
-disc.
The parametric connected sum operation is more complicated than the usual connected
sum operation since the isotopy classes of the embeddings of
into
may be significantly more complicated than the isotopy classes of embeddings of n-discs need for connected sum: these last are determined by (local) orientations.
2 Connected sum along k-spheres
We say above that to define connected sum for connected k-manifolds and
it is sufficient to equip them with an isotopy class of embeddings of the k-disc. Moreover, the disjoint union
is the unique thickening of
. This motivates the following
Defintion 2.1.
A manifold with an -thickening, an
-thickened manifold for short, is a pair
where
is a compact connected manifold and
is an embedding.
Defintion 2.2.
Let and
by
-thickened manifolds. Define

where is defined via the embeddings
and
.
It is clear that we have the following
Observation 2.3.
The diffeomorphism type of depends only upon the the isotopy classes of the embeddings
and
(which of course includes the diffeomorphism types of
and
).
2.1 Applications
The operation of -connected sum was used in [Ajala1984] and [Ajala1987] to describe the set of smooth structures on the product of spheres
. This construction also appears in [Sako1981].
The analogue of such a construction for embeddings, the -parametric connected sum of embeddings, is used
- to define, for
, a group stucture on the set
of (smooth or PL) isotopy classes of embeddings
[Skopenkov2006], \S3.4, [Skopenkov2006a], \S3, [Skopenkov2015a].
- to construct an action of this group on the set of isotopy classes of embeddings of certain
-manifolds into
[Skopenkov2014], 1.2.
- to estimate the set of isotopy classes of embeddings [Cencelj&Repovš&Skopenkov2007], [Cencelj&Repovš&Skopenkov2008], [Skopenkov2007], [Skopenkov2010], [Skopenkov2015], [Skopenkov2015a].
3 Parametric connected sum along thickenings
Let be a stable fibred vector bundle. A foundational theorem of modified surgery is
In particular, has the structure of an abelian group. The question of whether there is a geometric definition of this group structure is taken up in [Kreck1985, Chapter 2, pp 26-7] where it is shown how to use parametric connected sum along thickenings to define an addition of stable diffeomorphism classes of closed 2n-B-manifolds.
4 References
- [Ajala1984] S. O. Ajala, Differentiable structures on products of spheres, Houston J. Math. 10 (1984), no.1, 1–14. MR736571 (85c:57032) Zbl 0547.57026
- [Ajala1987] S. O. Ajala, Differentiable structures on a generalized product of spheres, Internat. J. Math. Math. Sci. 10 (1987), no.2, 217–226. MR886378 (88j:57028) Zbl 0627.57022
- [Cencelj&Repovš&Skopenkov2007] M. Cencelj, D. Repovš and M. Skopenkov, Homotopy type of the complement of an immersion and classification of embeddings of tori., Russ. Math. Surv.62 (2007), no.5, 985-987. Zbl 1141.57009
- [Cencelj&Repovš&Skopenkov2008] M. Cencelj, D. Repovš and M. Skopenkov, Classification of knotted tori in the 2-metastable dimension, Mat. Sbornik, 203:11 (2012), 1654-1681. Available at the arXiv:0811.2745.
- [Kreck1985] M. Kreck, An extension of the results of Browder, Novikov and Wall about surgery on compact manifolds, preprint Mainz (1985).
- [Kreck1999] M. Kreck, Surgery and duality, Ann. of Math. (2) 149 (1999), no.3, 707–754. MR1709301 (2001a:57051) Zbl 0935.57039
- [Sako1981] Y. Sako, Connected sum along the cycle operation of
on
-manifolds, Proc. Japan Acad. Ser. A Math. Sci. 57 (1981), no.10, 499–502. MR640259 (83a:57043) Zbl 0505.57010
- [Skopenkov2006] A. Skopenkov, Embedding and knotting of manifolds in Euclidean spaces, in: Surveys in Contemporary Mathematics, Ed. N. Young and Y. Choi, London Math. Soc. Lect. Notes, 347 (2008) 248-342. Available at the arXiv:0604045.
- [Skopenkov2006a] A. Skopenkov, Classification of embeddings below the metastable dimension. Available at the arXiv:0607422.
- [Skopenkov2007] A. Skopenkov, A new invariant and parametric connected sum of embeddings, Fund. Math. 197 (2007), 253–269. arXiv:math/0509621. MR2365891 (2008k:57044) Zbl 1145.57019
- [Skopenkov2010] A. Skopenkov, Embeddings of k-connected n-manifolds into
, Proc. AMS, 138 (2010) 3377--3389. Available at the arXiv:0812.0263.
- [Skopenkov2014] A. Skopenkov, How do autodiffeomorphisms act on embeddings, Proc. A of the Royal Society of Edinburgh, 148:4 (2018) 835--848.
- [Skopenkov2015] M. Skopenkov, When is the set of embeddings finite up to isotopy? Intern. J. Math. 26:7 (2015), http://arxiv.org/abs/1106.1878
- [Skopenkov2015a] A. Skopenkov, A classification of knotted tori, Proc. A of the Royal Society of Edinburgh, 150:2 (2020), 549-567. Full version: http://arxiv.org/abs/1502.04470