Parametric connected sum

(Difference between revisions)
Jump to: navigation, search
(Applications)
(Applications)
Line 35: Line 35:
* to define, for $m\ge 2p+q+3$, a group stucture on the set $E^m(S^p \times S^q)$ of (smooth or PL) isotopy classes of embeddings $S^p \times S^q\to \Rr^m$ \cite{Skopenkov2006}, \cite{Skopenkov2015a}.
* to define, for $m\ge 2p+q+3$, a group stucture on the set $E^m(S^p \times S^q)$ of (smooth or PL) isotopy classes of embeddings $S^p \times S^q\to \Rr^m$ \cite{Skopenkov2006}, \cite{Skopenkov2015a}.
* to construct an action of this group on the set of isotopy classes of embeddings of certain $(p+q)$-manifolds into $\Rr^m$ \cite{Skopenkov2014}, 1.2.
* to construct an action of this group on the set of isotopy classes of embeddings of certain $(p+q)$-manifolds into $\Rr^m$ \cite{Skopenkov2014}, 1.2.
* to estimate the set of isotopy classes of embeddings \cite{Skopenkov2007}, \cite{Skopenkov2010}.
+
* to estimate the set of isotopy classes of embeddings \cite{Skopenkov2007}, \cite{Skopenkov2010}, \cite{Skopenkov2015}, \cite{Skopenkov2015a}.
</wikitex>
</wikitex>

Revision as of 10:31, 28 April 2016

This page has not been refereed. The information given here might be incomplete or provisional.

Contents

1 Introduction

Parametric connected sum is an operation on compact connected n-manifolds
Tex syntax error
and N equipped with codimension 0-embeddings \phi: T \to M and \psi : T \to N of a compact connected manifold T. It generalises the usual connected sum operation

which is the special case when T = D^n is the n-disc. The parametric connected sum operation is more complicated than the usual connected

sum operation since the isotopy classes of the embeddings of T into
Tex syntax error
may be significantly more complicated than the isotopy classes of embeddings of n-discs need for connected sum: these last are determined by (local) orientations.

2 Connected sum along k-spheres

We say above that to define connected sum for connected k-manifolds
Tex syntax error
and N it is sufficient to equip them with an isotopy class of embeddings of the k-disc. Moreover, the disjoint union D^n \sqcup D^n is the unique thickening of S^0. This motivates the following

Defintion 2.1.

A manifold with an S^k-thickening, an S^k-thickened manifold for short, is a pair (M, \phi) where
Tex syntax error
is a compact connected manifold and \phi : S^k \times D^{n-k} \to \mathrm{int}(M) is an embedding.

Defintion 2.2. Let M = (M, \phi) and N = (N, \psi) by S^k-thickened manifolds. Define

\displaystyle  M \sharp_k N = (M - \phi(S^k \times \{ 0 \}) \cup (N - \psi(S^k \times \{ 0 \})/\simeq

where \simeq is defined via the embeddings \phi and \psi.

It is clear that we have the following

Observation 2.3.

The diffeomorphism type of M \sharp_k N depends only upon the the isotopy classes of the embeddings \phi and \psi (which of course includes the diffeomorphism types of
Tex syntax error
and N).

2.1 Applications

The operation of S^k-connected sum was used in [Ajala1984] and [Ajala1987] to describe the set of smooth structures on the product of spheres \Pi_{i=1}^r S^{n_i}. This construction also appears in [Sako1981].

The analogue of such a construction for embeddings, the S^k-parametric connected sum of embeddings, is used

3 Parametric connected sum along thickenings

Let B be a stable fibred vector bundle. A foundational theorem of modified surgery is

Theorem 3.1 Stable classification: [Kreck1985], [Kreck1999].

\displaystyle  NSt_{2n}(B) \cong \Omega_{2n}^B.

In particular, NSt_{2n}(B) has the structure of an abelian group. The question of whether there is a geometric definition of this group structure is taken up in [Kreck1985, Chapter 2, pp 26-7] where it is shown how to use parametric connected sum along thickenings to define an addition of stable diffeomorphism classes of closed 2n-B-manifolds.

4 References

Personal tools
Namespaces
Variants
Actions
Navigation
Interaction
Toolbox