Talk:Thom spaces (Ex)

From Manifold Atlas
(Difference between revisions)
Jump to: navigation, search
(4 intermediate revisions by one user not shown)
Line 1: Line 1:
<wikitex>;
<wikitex>;
Part 1
+
'''Part 1'''
We define
We define
Line 20: Line 20:
where $\mathrm{arg}(z)\in(0,2\pi)$.
where $\mathrm{arg}(z)\in(0,2\pi)$.
Part 2
+
'''Part 2'''
The map $\Omega_n(\overline{i_k})$: $\Omega_n(\gamma_k)\to\Omega_n(\gamma_{k+1})$ is given by
+
If $i$: $M\to\mathbb{R}^{n+k}$ is an embedding, we denote by $j$: $M\to\mathbb{R}^{n+k+1}$ the composition
</wikitex>;
+
of $i$ with the inclusion $\mathbb{R}^{n+k}=\mathbb{R}^{n+k}\times\{0\}\subset\mathbb{R}^{n+k+1}$.
+
In particular the normal bundles are related by $\nu(M,j)=\nu(M,i)\oplus\underline{\mathbb{R}}$.
+
The bundle map $(i_k,\overline{i_k})$ induces
+
$$
+
\Omega_n(\overline{i_k}): \Omega_n(\gamma_k)\to\Omega_n(\gamma_{k+1}),\quad
+
[M,i,f,\overline{f}]\mapsto[M,j,i_k\circ f,\overline{i_k}\circ(\overline{f}\oplus\mathrm{id}_{\underline{\mathbb{R}}})].
+
$$
+
From the definition
+
$$
+
V_k:\quad\Omega_n(\gamma_k)\to\Omega_n(X),\quad
+
[M,i,f,\overline{f}]\mapsto[M,\mathrm{pr}_X\circ f]
+
$$
+
we find for all $k\geq0$
+
$$
+
(V_{k+1}\circ\Omega_n(\overline{i_k}))([M,i,f,\overline{f}])
+
=[M,\mathrm{pr}_X\circ i_k\circ f]
+
=[M,\mathrm{pr}_X\circ(\mathrm{id_X\times j_k})\circ f]
+
=[M,\mathrm{pr}_X\circ f]
+
=V_k([M,i,f,\overline{f}]).
+
$$
+
+
'''Part 3'''
+
+
Let the embeddings $i$ and $j$ be as in Part 2.
+
Define the collapse maps
+
$$
+
c_k:\quad S^{n+k}\to\mathrm{Th}(\nu(M,i)),\quad
+
c_{k+1}:\quad S^{n+k+1}\to\mathrm{Th}(\nu(M,j))
+
$$
+
as in {{citeD|Lück2001|page 57}}. Then we have $c_{k+1}=\Sigma c_k$.
+
For all $k\geq0$ we obtain
+
$$
+
(P_n(\gamma_{k+1})\circ\Omega_n(\overline{i_k}))([M,i,f,\overline{f}])
+
=P_n(\gamma_{k+1})([M,j,i_k\circ f,\overline{i_k}\circ(\overline{f}\oplus\mathrm{id}_{\underline{\mathbb{R}}})])
+
=[\mathrm{Th}(\overline{i_k}\circ(\overline{f}\oplus\mathrm{id}_{\underline{\mathbb{R}}}))\circ c_{k+1}]
+
=[\mathrm{Th}(\overline{i_k})\circ\mathrm{Th}(\overline{f}\oplus\mathrm{id}_{\underline{\mathbb{R}}})\circ c_{k+1}]
+
$$
+
and
+
$$
+
(s_k\circ P_n(\gamma_k))([M,i,f,\overline{f}])
+
=s_k([\mathrm{Th}(\overline{f})\circ c_k])
+
=[\mathrm{Th}(\overline{i_k})\circ\Sigma(\mathrm{Th}(\overline{f})\circ c_k)]
+
=[\mathrm{Th}(\overline{i_k})\circ\mathrm{Th}(\overline{f}\oplus\mathrm{id}_{\underline{\mathbb{R}}})\circ c_{k+1}].
+
$$
+
+
'''Part 4'''
+
+
Of course one can do similar things for non oriented manifolds or spin manifolds.
+
One only has to modify the definition of $\Omega_n(X)$ and use the corresponding universal bundle instead of $\xi_k$.
+
</wikitex>

Latest revision as of 12:17, 2 April 2012

Part 1

We define

\displaystyle  \mathrm{Th}(\xi_1)\wedge\mathrm{Th}(\xi_2)\to\mathrm{Th}(\xi_1\times\xi_2),\quad [v_1,v_2]\mapsto \left\{ \begin{array}{ll}\infty, & \textrm{if }v_1=\infty\textrm{ or }v_2=\infty \\ v_1\oplus v_2, & \textrm{else}\end{array} \right.

and

\displaystyle  S^1\wedge\mathrm{Th}(\xi)\to\mathrm{Th}(\xi\oplus\underline{\mathbb{R}}),\quad [z,v]\mapsto \left\{ \begin{array}{ll}\infty, & \textrm{if }z=1\textrm{ or }v=\infty \\ v\oplus\cot(\mathrm{arg}(z)/2), & \textrm{else}\end{array} \right.

where \mathrm{arg}(z)\in(0,2\pi).

Part 2

If i: M\to\mathbb{R}^{n+k} is an embedding, we denote by j: M\to\mathbb{R}^{n+k+1} the composition of i with the inclusion \mathbb{R}^{n+k}=\mathbb{R}^{n+k}\times\{0\}\subset\mathbb{R}^{n+k+1}. In particular the normal bundles are related by \nu(M,j)=\nu(M,i)\oplus\underline{\mathbb{R}}. The bundle map (i_k,\overline{i_k}) induces

\displaystyle  \Omega_n(\overline{i_k}): \Omega_n(\gamma_k)\to\Omega_n(\gamma_{k+1}),\quad  [M,i,f,\overline{f}]\mapsto[M,j,i_k\circ f,\overline{i_k}\circ(\overline{f}\oplus\mathrm{id}_{\underline{\mathbb{R}}})].

From the definition

\displaystyle  V_k:\quad\Omega_n(\gamma_k)\to\Omega_n(X),\quad  [M,i,f,\overline{f}]\mapsto[M,\mathrm{pr}_X\circ f]

we find for all k\geq0

\displaystyle  (V_{k+1}\circ\Omega_n(\overline{i_k}))([M,i,f,\overline{f}]) =[M,\mathrm{pr}_X\circ i_k\circ f] =[M,\mathrm{pr}_X\circ(\mathrm{id_X\times j_k})\circ f] =[M,\mathrm{pr}_X\circ f] =V_k([M,i,f,\overline{f}]).

Part 3

Let the embeddings i and j be as in Part 2. Define the collapse maps

\displaystyle  c_k:\quad S^{n+k}\to\mathrm{Th}(\nu(M,i)),\quad c_{k+1}:\quad S^{n+k+1}\to\mathrm{Th}(\nu(M,j))

as in [Lück2001, page 57]. Then we have c_{k+1}=\Sigma c_k. For all k\geq0 we obtain

\displaystyle  (P_n(\gamma_{k+1})\circ\Omega_n(\overline{i_k}))([M,i,f,\overline{f}]) =P_n(\gamma_{k+1})([M,j,i_k\circ f,\overline{i_k}\circ(\overline{f}\oplus\mathrm{id}_{\underline{\mathbb{R}}})]) =[\mathrm{Th}(\overline{i_k}\circ(\overline{f}\oplus\mathrm{id}_{\underline{\mathbb{R}}}))\circ c_{k+1}] =[\mathrm{Th}(\overline{i_k})\circ\mathrm{Th}(\overline{f}\oplus\mathrm{id}_{\underline{\mathbb{R}}})\circ c_{k+1}]

and

\displaystyle  (s_k\circ P_n(\gamma_k))([M,i,f,\overline{f}]) =s_k([\mathrm{Th}(\overline{f})\circ c_k]) =[\mathrm{Th}(\overline{i_k})\circ\Sigma(\mathrm{Th}(\overline{f})\circ c_k)] =[\mathrm{Th}(\overline{i_k})\circ\mathrm{Th}(\overline{f}\oplus\mathrm{id}_{\underline{\mathbb{R}}})\circ c_{k+1}].

Part 4

Of course one can do similar things for non oriented manifolds or spin manifolds. One only has to modify the definition of \Omega_n(X) and use the corresponding universal bundle instead of \xi_k.

Personal tools
Namespaces
Variants
Actions
Navigation
Interaction
Toolbox