Talk:Thom spaces (Ex)

From Manifold Atlas
Jump to: navigation, search

Part 1

We define

\displaystyle  \mathrm{Th}(\xi_1)\wedge\mathrm{Th}(\xi_2)\to\mathrm{Th}(\xi_1\times\xi_2),\quad [v_1,v_2]\mapsto \left\{ \begin{array}{ll}\infty, & \textrm{if }v_1=\infty\textrm{ or }v_2=\infty \\ v_1\oplus v_2, & \textrm{else}\end{array} \right.

and

\displaystyle  S^1\wedge\mathrm{Th}(\xi)\to\mathrm{Th}(\xi\oplus\underline{\mathbb{R}}),\quad [z,v]\mapsto \left\{ \begin{array}{ll}\infty, & \textrm{if }z=1\textrm{ or }v=\infty \\ v\oplus\cot(\mathrm{arg}(z)/2), & \textrm{else}\end{array} \right.

where \mathrm{arg}(z)\in(0,2\pi).

Part 2

If i: M\to\mathbb{R}^{n+k} is an embedding, we denote by j: M\to\mathbb{R}^{n+k+1} the composition of i with the inclusion \mathbb{R}^{n+k}=\mathbb{R}^{n+k}\times\{0\}\subset\mathbb{R}^{n+k+1}. In particular the normal bundles are related by \nu(M,j)=\nu(M,i)\oplus\underline{\mathbb{R}}. The bundle map (i_k,\overline{i_k}) induces

\displaystyle  \Omega_n(\overline{i_k}): \Omega_n(\gamma_k)\to\Omega_n(\gamma_{k+1}),\quad  [M,i,f,\overline{f}]\mapsto[M,j,i_k\circ f,\overline{i_k}\circ(\overline{f}\oplus\mathrm{id}_{\underline{\mathbb{R}}})].

From the definition

\displaystyle  V_k:\quad\Omega_n(\gamma_k)\to\Omega_n(X),\quad  [M,i,f,\overline{f}]\mapsto[M,\mathrm{pr}_X\circ f]

we find for all k\geq0

\displaystyle  (V_{k+1}\circ\Omega_n(\overline{i_k}))([M,i,f,\overline{f}]) =[M,\mathrm{pr}_X\circ i_k\circ f] =[M,\mathrm{pr}_X\circ(\mathrm{id_X\times j_k})\circ f] =[M,\mathrm{pr}_X\circ f] =V_k([M,i,f,\overline{f}]).

Part 3

Let the embeddings i and j be as in Part 2. Define the collapse maps

\displaystyle  c_k:\quad S^{n+k}\to\mathrm{Th}(\nu(M,i)),\quad c_{k+1}:\quad S^{n+k+1}\to\mathrm{Th}(\nu(M,j))

as in [Lück2001, page 57]. Then we have c_{k+1}=\Sigma c_k. For all k\geq0 we obtain

\displaystyle  (P_n(\gamma_{k+1})\circ\Omega_n(\overline{i_k}))([M,i,f,\overline{f}]) =P_n(\gamma_{k+1})([M,j,i_k\circ f,\overline{i_k}\circ(\overline{f}\oplus\mathrm{id}_{\underline{\mathbb{R}}})]) =[\mathrm{Th}(\overline{i_k}\circ(\overline{f}\oplus\mathrm{id}_{\underline{\mathbb{R}}}))\circ c_{k+1}] =[\mathrm{Th}(\overline{i_k})\circ\mathrm{Th}(\overline{f}\oplus\mathrm{id}_{\underline{\mathbb{R}}})\circ c_{k+1}]

and

\displaystyle  (s_k\circ P_n(\gamma_k))([M,i,f,\overline{f}]) =s_k([\mathrm{Th}(\overline{f})\circ c_k]) =[\mathrm{Th}(\overline{i_k})\circ\Sigma(\mathrm{Th}(\overline{f})\circ c_k)] =[\mathrm{Th}(\overline{i_k})\circ\mathrm{Th}(\overline{f}\oplus\mathrm{id}_{\underline{\mathbb{R}}})\circ c_{k+1}].

Part 4

Of course one can do similar things for non oriented manifolds or spin manifolds. One only has to modify the definition of \Omega_n(X) and use the corresponding universal bundle instead of \xi_k.

Personal tools
Namespaces
Variants
Actions
Navigation
Interaction
Toolbox