Talk:Thom spaces (Ex)

(Difference between revisions)
Jump to: navigation, search
Line 30: Line 30:
[M,i,f,\overline{f}]\mapsto[M,j,i_k\circ f,\overline{i_k}\circ(\overline{f}\oplus\mathrm{id}_{\underline{\mathbb{R}}})].
[M,i,f,\overline{f}]\mapsto[M,j,i_k\circ f,\overline{i_k}\circ(\overline{f}\oplus\mathrm{id}_{\underline{\mathbb{R}}})].
$$
$$
+
From the definition
+
$$
+
V_k:\quad\Omega_n(\gamma_k)\to\Omega_n(X),\quad
+
[M,i,f,\overline{f}]\mapsto[M,\mathrm{pr}_X\circ f]
+
$$
+
we find for all $k\geq0$
+
$$
+
(V_{k+1}\circ\Omega_n(\overline{i_k}))([M,i,f,\overline{f}])
+
=[M,\mathrm{pr}_X\circ i_k\circ f]
+
=[M,\mathrm{pr}_X\circ(\mathrm{id_X\times j_k})\circ f]
+
=[M,\mathrm{pr}_X\circ f]
+
=V_k([M,i,f,\overline{f}]).
+
$$
</wikitex>;
</wikitex>;

Revision as of 09:41, 2 April 2012

Part 1

We define

\displaystyle  \mathrm{Th}(\xi_1)\wedge\mathrm{Th}(\xi_2)\to\mathrm{Th}(\xi_1\times\xi_2),\quad [v_1,v_2]\mapsto \left\{ \begin{array}{ll}\infty, & \textrm{if }v_1=\infty\textrm{ or }v_2=\infty \\ v_1\oplus v_2, & \textrm{else}\end{array} \right.

and

\displaystyle  S^1\wedge\mathrm{Th}(\xi)\to\mathrm{Th}(\xi\oplus\underline{\mathbb{R}}),\quad [z,v]\mapsto \left\{ \begin{array}{ll}\infty, & \textrm{if }z=1\textrm{ or }v=\infty \\ v\oplus\cot(\mathrm{arg}(z)/2), & \textrm{else}\end{array} \right.

where \mathrm{arg}(z)\in(0,2\pi).

Part 2

If i: M\to\mathbb{R}^{n+k} is an embedding, we denote by j: M\to\mathbb{R}^{n+k+1} the composition of i with the inclusion \mathbb{R}^{n+k}=\mathbb{R}^{n+k}\times\{0\}\subset\mathbb{R}^{n+k+1}. In particular the normal bundles are related by \nu(M,j)=\nu(M,i)\oplus\underline{\mathbb{R}}. The bundle map (i_k,\overline{i_k}) induces

\displaystyle  \Omega_n(\overline{i_k}): \Omega_n(\gamma_k)\to\Omega_n(\gamma_{k+1}),\quad  [M,i,f,\overline{f}]\mapsto[M,j,i_k\circ f,\overline{i_k}\circ(\overline{f}\oplus\mathrm{id}_{\underline{\mathbb{R}}})].

From the definition

\displaystyle  V_k:\quad\Omega_n(\gamma_k)\to\Omega_n(X),\quad  [M,i,f,\overline{f}]\mapsto[M,\mathrm{pr}_X\circ f]

we find for all k\geq0

\displaystyle  (V_{k+1}\circ\Omega_n(\overline{i_k}))([M,i,f,\overline{f}]) =[M,\mathrm{pr}_X\circ i_k\circ f] =[M,\mathrm{pr}_X\circ(\mathrm{id_X\times j_k})\circ f] =[M,\mathrm{pr}_X\circ f] =V_k([M,i,f,\overline{f}]).
;
Personal tools
Namespaces
Variants
Actions
Navigation
Interaction
Toolbox