Knots, i.e. embeddings of spheres

From Manifold Atlas
Revision as of 13:30, 28 December 2023 by Askopenkov (Talk | contribs)
Jump to: navigation, search

This page has not been refereed. The information given here might be incomplete or provisional.

Contents

1 Introduction

For a general introduction to embeddings as well as the notation and conventions used on this page, we refer to [Skopenkov2016c, \S1, \S3].

2 Examples

There are smooth embeddings S^{2l-1}\to\Rr^{3l} which are not smoothly isotopic to the standard embedding. They are PS (piecewise smoothly) isotopic to the standard embedding (by the Zeeman Unknotting Spheres Theorem 2.3 of [Skopenkov2016c] and [Skopenkov2016f, Remark 1.1]).

Example 2.1. (a) Analogously to the Haefliger trefoil knot for any l>1 one constructs a smooth embedding t:S^{2l-1}\to\Rr^{3l}, see [Skopenkov2016h, \S5]. For l even t is not smoothly isotopic to the standard embedding; t represents a generator of E_D^{3l}(S^{2l-1})\cong\Zz [Haefliger1962].

It would be interesting to know if for l>1 odd this embedding is a generator of E_D^{3l}(S^{2l-1})\cong\Zz_2. The last phrase of [Haefliger1962t] suggests that this is true for l=3.

(b) For any k=1,3,7 let \eta\in\pi_{4k-1}(S^{2k}) be the homotopy class of the Hopf map. Denote by \zeta:\pi_{4k-1}(S^{2k})\to E_D^{6k}(S^{4k-1}\sqcup S^{4k-1}) the Zeeman map, see [Skopenkov2016h, Definition 2.2]. The embedded connected sum \#\zeta\eta of the components of (a representative of) \zeta\eta is not smoothly isotopic to the standard embedding; \#\zeta\eta is a generator of E_D^{6k}(S^{4k-1})\cong\Z [Skopenkov2015a, Corollary 2.13].

3 Invariants

Let us define the Haefliger invariant \varkappa:E^{6k}_D(S^{4k-1})\to\Z. The definition is motivated by Haefliger's proof that any embedding S^n\to S^m is isotopic to the standard embedding for 2m\ge3n+4, and by analyzing what obstructs carrying this proof for 2m=3n+3.

By [Haefliger1962, 2.1, 2.2] any embedding f:S^{4k-1}\to S^{6k} has a framing extendable to a framed embedding \overline f:V\to D^{6k+1} of a 4k-manifold V whose boundary is S^{4k-1}, and whose signature is zero. For an integer 2k-cycle c in V let \lambda^*(c)\in\Z be the linking number of f(V) with a slight shift of \overline f(c) along the first vector of the framing. This defines a map \lambda^*:H_{2k}(V;\Z)\to\Z. This map is a homomorphism (as opposed to the Arf map defined in a similar way). Then by Lefschetz duality there is a unique \lambda\in H_{2k}(V,\partial;\Z) such that \lambda^*[c]=\lambda\cap_V[c] for any [c]\in H_{2k}(V;\Z). Since V has a normal framing, its intersection form \cap_V is even. (Indeed, represent a class in H_{2k}(V;\Z) by a closed oriented 2k-submanifold c. Then \rho_2[c]\cap_V[c]=\overline{w_{2k}}(c\subset V)=\rho_2[c]\cap_VPDw_{2k}(V)=0 because V has a normal framing.) Hence \lambda\cap_V\lambda is an even integer. Define
\displaystyle \varkappa(f):=\lambda\cap_V\lambda/2.

Since the signature of V is zero, there is a symplectic basis \alpha_1,\ldots,\alpha_s,\beta_1,\ldots,\beta_s in H_{2k}(V;\Z). Then clearly

\displaystyle \varkappa(f) = \sum\limits_{j=1}^s \lambda^*(\beta_j)\lambda^*(\alpha_j).

For an alternative definition via Seifert surfaces in 6k-space, discovered in [Guillou&Marin1986], [Takase2004], see [Skopenkov2016t, the Kreck Invariant Lemma 4.5]. For a definition by Kreck, and for a generalization to 3-manifolds see [Skopenkov2016t, \S4].

Sketch of a proof that \varkappa(f) is well-defined (i.e. is independent of V, \overline f, and the framings), and is invariant under isotopy of f. [Haefliger1962, Theorem 2.6] Analogously one defines \lambda(V) and \varkappa(V):=\lambda(V)\cap_V\lambda(V)/2 for a framed 4k-submanifold V of S^{6k+1}. Since \varkappa(V) is a characteristic number, it is independent of framed cobordism. So \varkappa(V) defines a homomorphism \Omega_{fr}^{4k}(6k+1)=\pi_{6k+1}(S^{2k+1})\to\Z. The latter group is finite by the Serre theorem. Hence the homomorphism is trivial.

Since \varkappa(f) is a characteristic number, it is independent of framed cobordism of a framed f (and hence of the isotopy of a framed f).

Therefore \varkappa(f) is a well-defined invariant of a framed cobordism class of a framed f. By [Haefliger1962, 2.9] (cf. [Haefliger1962, 2.2 and 2.3]) \varkappa(f) is also independent of the framing of f extendable to a framing of some 4k-manifold V having trivial signature. QED

For definition of the attaching invariant E^m_D(S^q)\to\pi_q(G_{m-q},SO_{m-q}) see [Haefliger1966], [Skopenkov2005, \S3].

4 Classification

Theorem 4.1 [Levine1965, Corollary in p. 44], [Haefliger1966]. For m-n\ge3 the group E^m_D(S^n) is finite unless n=4k-1 and m\le6k, when E^m_D(S^n) is the sum of \Z and a finite group.

Theorem 4.2 (Haefliger-Milgram). We have the following table for the group E^m_D(S^n); in the whole table k\ge1; in the fifth column k\ne2; in the last two columns k\ge2:

\displaystyle \begin{array}{c|c|c|c|c|c|c|c} (m,n)     &2m\ge3n+4 &(6k,4k-1) &(6k+3,4k+1) &(7,4)   &(6k+4,4k+2) &(12k+7,8k+4) & (12k+1,8k)\\  \hline E^m_D(S^n)&0         &\Z        &\Z_2        &\Z_{12} &0           &\Z_4         &\Z_2\oplus\Z_2 \end{array}

Proof for the first four columns, and for the fifth column when k is odd, are presented in [Haefliger1966, 8.15] (or are deduced from that paper using simple calculations, cf. [Skopenkov2005, \S3]; (there is a typo in [Haefliger1966, 8.15]: C^{3k}_{4k−2}=0 should be C^{4k}_{8k−2}=0). The remaining results follow from [Haefliger1966, 8.15] and [Milgram1972, Theorem F]. Alternative proofs for the cases (m,n)=(7,4),(6,3) are given in [Skopenkov2005], [Crowley&Skopenkov2008], [Skopenkov2008].

Theorem 4.3 [Milgram1972, Corollary G]. We have E^m_D(S^n)=0 if and only if either 2m\ge3n+4, or (m,n)=(6k+4,4k+2), or (m,n)=(3k,2k) and k\equiv3,11\mod12, or (m,n)=(3k+2,2k+2) and k\equiv14,22\mod24.

For a description of 2-components of E^m_D(S^n) see [Milgram1972, Theorem F].

Observe that no reliable reference (containing complete proofs) of results announced in [Milgram1972] appeared. Thus, strictly speaking, the corresponding results are conjectures.

The lowest-dimensional unknown groups E^m_D(S^n) are E^8_D(S^5) and E^{11}_D(S^7). Hopefully application of Kreck surgery could be useful to find these groups, cf. [Skopenkov2005], [Crowley&Skopenkov2008], [Skopenkov2008].

For m\ge n+3 the group E^m_D(S^n) has been described as follows, in terms of exact sequences [Haefliger1966], cf. [Levine1965], [Haefliger1966a], [Milgram1972], [Habegger1986].

Theorem 4.4 [Haefliger1966]. For q\ge3 there is the following exact sequence of abelian groups:

\displaystyle  \ldots \to \pi_{n+1}(SG,SO) \xrightarrow{~u~} E^{n+q}_D(S^n) \xrightarrow{~a~} \pi_n(SG_q,SO_q) \xrightarrow{~s~} \pi_n(SG,SO)  \xrightarrow{~u~} E^{n+q-1}_D(S^{n-1})\to \ldots~.

Here SG_q be the space of maps S^{q-1} \to S^{q-1} of degree 1. Restricting an element of SO_q to S^{q-1} \subset \Rr^q identifies SO_q as a subspace of SG_q. Let SG:=SG_1\cup\ldots\cup SG_q\cup\ldots. Analogously define SO. Let s be the stabilization homomorphism. The attaching invariant a and the map u are defined in [Haefliger1966], see also [Skopenkov2005, \S3].

5 Some remarks on codimension 2 knots

For the best known specific case, i.e. for codimension 2 embeddings of spheres (in particular, for the classical theory of knots in \Rr^3), a complete readily calculable classification (in the sense of Remark 1.2 of [Skopenkov2016c]) is neither known nor expected at the time of writing. However, there is a vast literature on codimension 2 knots. See e.g. the interesting papers [Farber1981], [Farber1983], [Kearton1983], [Farber1984].

On the other hand, if one studies embeddings up to the weaker relation of concordance, then much is known. See e.g. [Levine1969a] and [Ranicki1998].

6 References

  • [Crowley&Skopenkov2008] D. Crowley and A. Skopenkov, A classification of smooth embeddings of 4-manifolds in 7-space, II, Intern. J. Math., 22:6 (2011) 731-757. Available at the arXiv:0808.1795.
  • [Farber1981] M. Sh. Farber, Classification of stable fibered knots, Mat. Sb. (N.S.), 115(157):2(6) (1981) 223–262.
  • [Farber1983] M. Sh. Farber, The classification of simple knots, Russian Math. Surveys, 38:5 (1983).

, $\S]{Skopenkov2016c}. == Examples == ; There are smooth embeddings $S^{2l-1}\to\Rr^{3l}$ which are not smoothly isotopic to the standard embedding. They are PS (piecewise smoothly) isotopic to the standard embedding (by the Zeeman [[Embeddings_in_Euclidean_space:_an_introduction_to_their_classification#Unknotting_theorems|Unknotting Spheres Theorem 2.3]] of \cite{Skopenkov2016c} and \cite[Remark 1.1]{Skopenkov2016f}). {{beginthm|Example}}\label{e:gen} (a) Analogously to [[3-manifolds_in_6-space#Examples|the Haefliger trefoil knot]] for any $l>1$ one constructs a smooth embedding $t:S^{2l-1}\to\Rr^{3l}$, see \cite[$\S]{Skopenkov2016h}. For $l$ even $t$ is not smoothly isotopic to the standard embedding; $t$ represents a generator of $E_D^{3l}(S^{2l-1})\cong\Zz$ \cite{Haefliger1962}. It would be interesting to know if for $l>1$ odd this embedding is a generator of $E_D^{3l}(S^{2l-1})\cong\Zz_2$. The last phrase of \cite{Haefliger1962t} suggests that this is true for $l=3$. (b) For any $k=1,3,7$ let $\eta\in\pi_{4k-1}(S^{2k})$ be the homotopy class of the Hopf map. Denote by $\zeta:\pi_{4k-1}(S^{2k})\to E_D^{6k}(S^{4k-1}\sqcup S^{4k-1})$ [[High_codimension_links#Examples|the Zeeman map]], see \cite[Definition 2.2]{Skopenkov2016h}. The embedded connected sum $\#\zeta\eta$ of the components of (a representative of) $\zeta\eta$ is not smoothly isotopic to the standard embedding; $\#\zeta\eta$ is a generator of $E_D^{6k}(S^{4k-1})\cong\Z$ \cite[Corollary 2.13]{Skopenkov2015a}. {{endthm}} == Invariants == ; Let us define the ''Haefliger invariant'' $\varkappa:E^{6k}_D(S^{4k-1})\to\Z$. The definition is motivated by Haefliger's proof that any embedding $S^n\to S^m$ is isotopic to the standard embedding for m\ge3n+4$, and by analyzing what obstructs carrying this proof for m=3n+3$. By \cite[2.1, 2.2]{Haefliger1962} any embedding $f:S^{4k-1}\to S^{6k}$ has a framing extendable to a framed embedding $\overline f:V\to D^{6k+1}$ of a k$-manifold $V$ whose boundary is $S^{4k-1}$, and whose signature is zero. For an integer k$-cycle $c$ in $V$ let $\lambda^*(c)\in\Z$ be the linking number of $f(V)$ with a slight shift of $\overline f(c)$ along the first vector of the framing. This defines a map $\lambda^*:H_{2k}(V;\Z)\to\Z$. This map is a homomorphism (as opposed to the Arf map defined in a similar way). Then by Lefschetz duality there is a unique $\lambda\in H_{2k}(V,\partial;\Z)$ such that $\lambda^*[c]=\lambda\cap_V[c]$ for any $[c]\in H_{2k}(V;\Z)$. Since $V$ has a normal framing, its intersection form $\cap_V$ is even. (Indeed, represent a class in $H_{2k}(V;\Z)$ by a closed oriented k$-submanifold $c$. Then $\rho_2[c]\cap_V[c]=\overline{w_{2k}}(c\subset V)=\rho_2[c]\cap_VPDw_{2k}(V)=0$ because $V$ has a normal framing.) Hence $\lambda\cap_V\lambda$ is an even integer. Define $$\varkappa(f):=\lambda\cap_V\lambda/2.$$ Since the signature of $V$ is zero, there is a symplectic basis $\alpha_1,\ldots,\alpha_s,\beta_1,\ldots,\beta_s$ in $H_{2k}(V;\Z)$. Then clearly $$\varkappa(f) = \sum\limits_{j=1}^s \lambda^*(\beta_j)\lambda^*(\alpha_j).$$ For an alternative definition via Seifert surfaces in k$-space, discovered in \cite{Guillou&Marin1986}, \cite{Takase2004}, see \cite[the Kreck Invariant Lemma 4.5]{Skopenkov2016t}. For a definition by Kreck, and for a generalization to 3-manifolds see \cite[$\S]{Skopenkov2016t}. ''Sketch of a proof that $\varkappa(f)$ is well-defined (i.e. is independent of $V$, $\overline f$, and the framings), and is invariant under isotopy of $f$.'' \cite[Theorem 2.6]{Haefliger1962} Analogously one defines $\lambda(V)$ and $\varkappa(V):=\lambda(V)\cap_V\lambda(V)/2$ for a framed k$-submanifold $V$ of $S^{6k+1}$. Since $\varkappa(V)$ is a characteristic number, it is independent of framed cobordism. So $\varkappa(V)$ defines a homomorphism $\Omega_{fr}^{4k}(6k+1)=\pi_{6k+1}(S^{2k+1})\to\Z$. The latter group is finite by the Serre theorem. Hence the homomorphism is trivial. Since $\varkappa(f)$ is a characteristic number, it is independent of framed cobordism of a framed $f$ (and hence of the isotopy of a framed $f$). Therefore $\varkappa(f)$ is a well-defined invariant of a framed cobordism class of a framed $f$. By \cite[2.9]{Haefliger1962} (cf. \cite[2.2 and 2.3]{Haefliger1962}) $\varkappa(f)$ is also independent of the framing of $f$ extendable to a framing of some k$-manifold $V$ having trivial signature. QED For definition of the ''attaching invariant'' $E^m_D(S^q)\to\pi_q(G_{m-q},SO_{m-q})$ see \cite{Haefliger1966}, \cite[$\S]{Skopenkov2005}. == Classification == ; {{beginthm|Theorem|\cite[Corollary in p. 44]{Levine1965}, \cite{Haefliger1966}}}\label{t:leha} For $m-n\ge3$ the group $E^m_D(S^n)$ is finite unless $n=4k-1$ and $m\le6k$, when $E^m_D(S^n)$ is the sum of $\Z$ and a finite group. {{endthm}} {{beginthm|Theorem|(Haefliger-Milgram)}}\label{t:hami} We have the following table for the group $E^m_D(S^n)$; in the whole table $k\ge1$; in the fifth column $k\ne2$; in the last two columns $k\ge2$: $$\begin{array}{c|c|c|c|c|c|c|c} (m,n) &2m\ge3n+4 &(6k,4k-1) &(6k+3,4k+1) &(7,4) &(6k+4,4k+2) &(12k+7,8k+4) & (12k+1,8k)\ \hline E^m_D(S^n)&0 &\Z &\Z_2 &\Z_{12} &0 &\Z_4 &\Z_2\oplus\Z_2 \end{array}$$ {{endthm}} Proof for the first four columns, and for the fifth column when $k$ is odd, are presented in \cite[8.15]{Haefliger1966} (or are deduced from that paper using simple calculations, cf. \cite[$\S]{Skopenkov2005}; (there is a typo in \cite[8.15]{Haefliger1966}: $C^{3k}_{4k−2}=0$ should be $C^{4k}_{8k−2}=0$). The remaining results follow from \cite[8.15]{Haefliger1966} and \cite[Theorem F]{Milgram1972}. Alternative proofs for the cases $(m,n)=(7,4),(6,3)$ are given in \cite{Skopenkov2005}, \cite{Crowley&Skopenkov2008}, \cite{Skopenkov2008}. {{beginthm|Theorem|\cite[Corollary G]{Milgram1972}}}\label{t:mi} We have $E^m_D(S^n)=0$ if and only if either m\ge3n+4$, or $(m,n)=(6k+4,4k+2)$, or $(m,n)=(3k,2k)$ and $k\equiv3,11\mod12$, or $(m,n)=(3k+2,2k+2)$ and $k\equiv14,22\mod24$. {{endthm}} For a description of 2-components of $E^m_D(S^n)$ see \cite[Theorem F]{Milgram1972}. Observe that no reliable reference (containing complete proofs) of results announced in \cite{Milgram1972} appeared. Thus, strictly speaking, the corresponding results are conjectures. The lowest-dimensional unknown groups $E^m_D(S^n)$ are $E^8_D(S^5)$ and $E^{11}_D(S^7)$. Hopefully application of Kreck surgery could be useful to find these groups, cf. \cite{Skopenkov2005}, \cite{Crowley&Skopenkov2008}, \cite{Skopenkov2008}. For $m\ge n+3$ the group $E^m_D(S^n)$ has been described as follows, in terms of exact sequences \cite{Haefliger1966}, cf. \cite{Levine1965}, \cite{Haefliger1966a}, \cite{Milgram1972}, \cite{Habegger1986}. {{beginthm|Theorem|\cite{Haefliger1966}}}\label{t:knots} For $q\ge3$ there is the following exact sequence of abelian groups: $$ \ldots \to \pi_{n+1}(SG,SO) \xrightarrow{~u~} E^{n+q}_D(S^n) \xrightarrow{~a~} \pi_n(SG_q,SO_q) \xrightarrow{~s~} \pi_n(SG,SO) \xrightarrow{~u~} E^{n+q-1}_D(S^{n-1})\to \ldots~.$$ Here $SG_q$ be the space of maps $S^{q-1} \to S^{q-1}$ of degree \S1, \S3].

2 Examples

There are smooth embeddings S^{2l-1}\to\Rr^{3l} which are not smoothly isotopic to the standard embedding. They are PS (piecewise smoothly) isotopic to the standard embedding (by the Zeeman Unknotting Spheres Theorem 2.3 of [Skopenkov2016c] and [Skopenkov2016f, Remark 1.1]).

Example 2.1. (a) Analogously to the Haefliger trefoil knot for any l>1 one constructs a smooth embedding t:S^{2l-1}\to\Rr^{3l}, see [Skopenkov2016h, \S5]. For l even t is not smoothly isotopic to the standard embedding; t represents a generator of E_D^{3l}(S^{2l-1})\cong\Zz [Haefliger1962].

It would be interesting to know if for l>1 odd this embedding is a generator of E_D^{3l}(S^{2l-1})\cong\Zz_2. The last phrase of [Haefliger1962t] suggests that this is true for l=3.

(b) For any k=1,3,7 let \eta\in\pi_{4k-1}(S^{2k}) be the homotopy class of the Hopf map. Denote by \zeta:\pi_{4k-1}(S^{2k})\to E_D^{6k}(S^{4k-1}\sqcup S^{4k-1}) the Zeeman map, see [Skopenkov2016h, Definition 2.2]. The embedded connected sum \#\zeta\eta of the components of (a representative of) \zeta\eta is not smoothly isotopic to the standard embedding; \#\zeta\eta is a generator of E_D^{6k}(S^{4k-1})\cong\Z [Skopenkov2015a, Corollary 2.13].

3 Invariants

Let us define the Haefliger invariant \varkappa:E^{6k}_D(S^{4k-1})\to\Z. The definition is motivated by Haefliger's proof that any embedding S^n\to S^m is isotopic to the standard embedding for 2m\ge3n+4, and by analyzing what obstructs carrying this proof for 2m=3n+3.

By [Haefliger1962, 2.1, 2.2] any embedding f:S^{4k-1}\to S^{6k} has a framing extendable to a framed embedding \overline f:V\to D^{6k+1} of a 4k-manifold V whose boundary is S^{4k-1}, and whose signature is zero. For an integer 2k-cycle c in V let \lambda^*(c)\in\Z be the linking number of f(V) with a slight shift of \overline f(c) along the first vector of the framing. This defines a map \lambda^*:H_{2k}(V;\Z)\to\Z. This map is a homomorphism (as opposed to the Arf map defined in a similar way). Then by Lefschetz duality there is a unique \lambda\in H_{2k}(V,\partial;\Z) such that \lambda^*[c]=\lambda\cap_V[c] for any [c]\in H_{2k}(V;\Z). Since V has a normal framing, its intersection form \cap_V is even. (Indeed, represent a class in H_{2k}(V;\Z) by a closed oriented 2k-submanifold c. Then \rho_2[c]\cap_V[c]=\overline{w_{2k}}(c\subset V)=\rho_2[c]\cap_VPDw_{2k}(V)=0 because V has a normal framing.) Hence \lambda\cap_V\lambda is an even integer. Define
\displaystyle \varkappa(f):=\lambda\cap_V\lambda/2.

Since the signature of V is zero, there is a symplectic basis \alpha_1,\ldots,\alpha_s,\beta_1,\ldots,\beta_s in H_{2k}(V;\Z). Then clearly

\displaystyle \varkappa(f) = \sum\limits_{j=1}^s \lambda^*(\beta_j)\lambda^*(\alpha_j).

For an alternative definition via Seifert surfaces in 6k-space, discovered in [Guillou&Marin1986], [Takase2004], see [Skopenkov2016t, the Kreck Invariant Lemma 4.5]. For a definition by Kreck, and for a generalization to 3-manifolds see [Skopenkov2016t, \S4].

Sketch of a proof that \varkappa(f) is well-defined (i.e. is independent of V, \overline f, and the framings), and is invariant under isotopy of f. [Haefliger1962, Theorem 2.6] Analogously one defines \lambda(V) and \varkappa(V):=\lambda(V)\cap_V\lambda(V)/2 for a framed 4k-submanifold V of S^{6k+1}. Since \varkappa(V) is a characteristic number, it is independent of framed cobordism. So \varkappa(V) defines a homomorphism \Omega_{fr}^{4k}(6k+1)=\pi_{6k+1}(S^{2k+1})\to\Z. The latter group is finite by the Serre theorem. Hence the homomorphism is trivial.

Since \varkappa(f) is a characteristic number, it is independent of framed cobordism of a framed f (and hence of the isotopy of a framed f).

Therefore \varkappa(f) is a well-defined invariant of a framed cobordism class of a framed f. By [Haefliger1962, 2.9] (cf. [Haefliger1962, 2.2 and 2.3]) \varkappa(f) is also independent of the framing of f extendable to a framing of some 4k-manifold V having trivial signature. QED

For definition of the attaching invariant E^m_D(S^q)\to\pi_q(G_{m-q},SO_{m-q}) see [Haefliger1966], [Skopenkov2005, \S3].

4 Classification

Theorem 4.1 [Levine1965, Corollary in p. 44], [Haefliger1966]. For m-n\ge3 the group E^m_D(S^n) is finite unless n=4k-1 and m\le6k, when E^m_D(S^n) is the sum of \Z and a finite group.

Theorem 4.2 (Haefliger-Milgram). We have the following table for the group E^m_D(S^n); in the whole table k\ge1; in the fifth column k\ne2; in the last two columns k\ge2:

\displaystyle \begin{array}{c|c|c|c|c|c|c|c} (m,n)     &2m\ge3n+4 &(6k,4k-1) &(6k+3,4k+1) &(7,4)   &(6k+4,4k+2) &(12k+7,8k+4) & (12k+1,8k)\\  \hline E^m_D(S^n)&0         &\Z        &\Z_2        &\Z_{12} &0           &\Z_4         &\Z_2\oplus\Z_2 \end{array}

Proof for the first four columns, and for the fifth column when k is odd, are presented in [Haefliger1966, 8.15] (or are deduced from that paper using simple calculations, cf. [Skopenkov2005, \S3]; (there is a typo in [Haefliger1966, 8.15]: C^{3k}_{4k−2}=0 should be C^{4k}_{8k−2}=0). The remaining results follow from [Haefliger1966, 8.15] and [Milgram1972, Theorem F]. Alternative proofs for the cases (m,n)=(7,4),(6,3) are given in [Skopenkov2005], [Crowley&Skopenkov2008], [Skopenkov2008].

Theorem 4.3 [Milgram1972, Corollary G]. We have E^m_D(S^n)=0 if and only if either 2m\ge3n+4, or (m,n)=(6k+4,4k+2), or (m,n)=(3k,2k) and k\equiv3,11\mod12, or (m,n)=(3k+2,2k+2) and k\equiv14,22\mod24.

For a description of 2-components of E^m_D(S^n) see [Milgram1972, Theorem F].

Observe that no reliable reference (containing complete proofs) of results announced in [Milgram1972] appeared. Thus, strictly speaking, the corresponding results are conjectures.

The lowest-dimensional unknown groups E^m_D(S^n) are E^8_D(S^5) and E^{11}_D(S^7). Hopefully application of Kreck surgery could be useful to find these groups, cf. [Skopenkov2005], [Crowley&Skopenkov2008], [Skopenkov2008].

For m\ge n+3 the group E^m_D(S^n) has been described as follows, in terms of exact sequences [Haefliger1966], cf. [Levine1965], [Haefliger1966a], [Milgram1972], [Habegger1986].

Theorem 4.4 [Haefliger1966]. For q\ge3 there is the following exact sequence of abelian groups:

\displaystyle  \ldots \to \pi_{n+1}(SG,SO) \xrightarrow{~u~} E^{n+q}_D(S^n) \xrightarrow{~a~} \pi_n(SG_q,SO_q) \xrightarrow{~s~} \pi_n(SG,SO)  \xrightarrow{~u~} E^{n+q-1}_D(S^{n-1})\to \ldots~.

Here SG_q be the space of maps S^{q-1} \to S^{q-1} of degree 1. Restricting an element of SO_q to S^{q-1} \subset \Rr^q identifies SO_q as a subspace of SG_q. Let SG:=SG_1\cup\ldots\cup SG_q\cup\ldots. Analogously define SO. Let s be the stabilization homomorphism. The attaching invariant a and the map u are defined in [Haefliger1966], see also [Skopenkov2005, \S3].

5 Some remarks on codimension 2 knots

For the best known specific case, i.e. for codimension 2 embeddings of spheres (in particular, for the classical theory of knots in \Rr^3), a complete readily calculable classification (in the sense of Remark 1.2 of [Skopenkov2016c]) is neither known nor expected at the time of writing. However, there is a vast literature on codimension 2 knots. See e.g. the interesting papers [Farber1981], [Farber1983], [Kearton1983], [Farber1984].

On the other hand, if one studies embeddings up to the weaker relation of concordance, then much is known. See e.g. [Levine1969a] and [Ranicki1998].

6 References

  • [Crowley&Skopenkov2008] D. Crowley and A. Skopenkov, A classification of smooth embeddings of 4-manifolds in 7-space, II, Intern. J. Math., 22:6 (2011) 731-757. Available at the arXiv:0808.1795.
  • [Farber1981] M. Sh. Farber, Classification of stable fibered knots, Mat. Sb. (N.S.), 115(157):2(6) (1981) 223–262.
  • [Farber1983] M. Sh. Farber, The classification of simple knots, Russian Math. Surveys, 38:5 (1983).

$. Restricting an element of $SO_q$ to $S^{q-1} \subset \Rr^q$ identifies $SO_q$ as a subspace of $SG_q$. Let $SG:=SG_1\cup\ldots\cup SG_q\cup\ldots$. Analogously define $SO$. Let $s$ be the stabilization homomorphism. The attaching invariant $a$ and the map $u$ are defined in \cite{Haefliger1966}, see also \cite[$\S]{Skopenkov2005}. {{endthm}}
== Some remarks on codimension 2 knots == ; For the best known specific case, i.e. for codimension 2 embeddings of spheres (in particular, for the classical theory of knots in $\Rr^3$), a complete readily calculable classification (in the sense of [[Embeddings_in_Euclidean_space:_an_introduction_to_their_classification#Introduction|Remark 1.2]] of \cite{Skopenkov2016c}) is neither known nor expected at the time of writing. However, there is a vast literature on codimension 2 knots. See e.g. the interesting papers \cite{Farber1981}, \cite{Farber1983}, \cite{Kearton1983}, \cite{Farber1984}. On the other hand, if one studies embeddings up to the weaker relation of [[Isotopy|''concordance'']], then much is known. See e.g. \cite{Levine1969a} and \cite{Ranicki1998}. == References == {{#RefList:}} [[Category:Manifolds]] [[Category:Embeddings of manifolds]]\S1, \S3].

2 Examples

There are smooth embeddings S^{2l-1}\to\Rr^{3l} which are not smoothly isotopic to the standard embedding. They are PS (piecewise smoothly) isotopic to the standard embedding (by the Zeeman Unknotting Spheres Theorem 2.3 of [Skopenkov2016c] and [Skopenkov2016f, Remark 1.1]).

Example 2.1. (a) Analogously to the Haefliger trefoil knot for any l>1 one constructs a smooth embedding t:S^{2l-1}\to\Rr^{3l}, see [Skopenkov2016h, \S5]. For l even t is not smoothly isotopic to the standard embedding; t represents a generator of E_D^{3l}(S^{2l-1})\cong\Zz [Haefliger1962].

It would be interesting to know if for l>1 odd this embedding is a generator of E_D^{3l}(S^{2l-1})\cong\Zz_2. The last phrase of [Haefliger1962t] suggests that this is true for l=3.

(b) For any k=1,3,7 let \eta\in\pi_{4k-1}(S^{2k}) be the homotopy class of the Hopf map. Denote by \zeta:\pi_{4k-1}(S^{2k})\to E_D^{6k}(S^{4k-1}\sqcup S^{4k-1}) the Zeeman map, see [Skopenkov2016h, Definition 2.2]. The embedded connected sum \#\zeta\eta of the components of (a representative of) \zeta\eta is not smoothly isotopic to the standard embedding; \#\zeta\eta is a generator of E_D^{6k}(S^{4k-1})\cong\Z [Skopenkov2015a, Corollary 2.13].

3 Invariants

Let us define the Haefliger invariant \varkappa:E^{6k}_D(S^{4k-1})\to\Z. The definition is motivated by Haefliger's proof that any embedding S^n\to S^m is isotopic to the standard embedding for 2m\ge3n+4, and by analyzing what obstructs carrying this proof for 2m=3n+3.

By [Haefliger1962, 2.1, 2.2] any embedding f:S^{4k-1}\to S^{6k} has a framing extendable to a framed embedding \overline f:V\to D^{6k+1} of a 4k-manifold V whose boundary is S^{4k-1}, and whose signature is zero. For an integer 2k-cycle c in V let \lambda^*(c)\in\Z be the linking number of f(V) with a slight shift of \overline f(c) along the first vector of the framing. This defines a map \lambda^*:H_{2k}(V;\Z)\to\Z. This map is a homomorphism (as opposed to the Arf map defined in a similar way). Then by Lefschetz duality there is a unique \lambda\in H_{2k}(V,\partial;\Z) such that \lambda^*[c]=\lambda\cap_V[c] for any [c]\in H_{2k}(V;\Z). Since V has a normal framing, its intersection form \cap_V is even. (Indeed, represent a class in H_{2k}(V;\Z) by a closed oriented 2k-submanifold c. Then \rho_2[c]\cap_V[c]=\overline{w_{2k}}(c\subset V)=\rho_2[c]\cap_VPDw_{2k}(V)=0 because V has a normal framing.) Hence \lambda\cap_V\lambda is an even integer. Define
\displaystyle \varkappa(f):=\lambda\cap_V\lambda/2.

Since the signature of V is zero, there is a symplectic basis \alpha_1,\ldots,\alpha_s,\beta_1,\ldots,\beta_s in H_{2k}(V;\Z). Then clearly

\displaystyle \varkappa(f) = \sum\limits_{j=1}^s \lambda^*(\beta_j)\lambda^*(\alpha_j).

For an alternative definition via Seifert surfaces in 6k-space, discovered in [Guillou&Marin1986], [Takase2004], see [Skopenkov2016t, the Kreck Invariant Lemma 4.5]. For a definition by Kreck, and for a generalization to 3-manifolds see [Skopenkov2016t, \S4].

Sketch of a proof that \varkappa(f) is well-defined (i.e. is independent of V, \overline f, and the framings), and is invariant under isotopy of f. [Haefliger1962, Theorem 2.6] Analogously one defines \lambda(V) and \varkappa(V):=\lambda(V)\cap_V\lambda(V)/2 for a framed 4k-submanifold V of S^{6k+1}. Since \varkappa(V) is a characteristic number, it is independent of framed cobordism. So \varkappa(V) defines a homomorphism \Omega_{fr}^{4k}(6k+1)=\pi_{6k+1}(S^{2k+1})\to\Z. The latter group is finite by the Serre theorem. Hence the homomorphism is trivial.

Since \varkappa(f) is a characteristic number, it is independent of framed cobordism of a framed f (and hence of the isotopy of a framed f).

Therefore \varkappa(f) is a well-defined invariant of a framed cobordism class of a framed f. By [Haefliger1962, 2.9] (cf. [Haefliger1962, 2.2 and 2.3]) \varkappa(f) is also independent of the framing of f extendable to a framing of some 4k-manifold V having trivial signature. QED

For definition of the attaching invariant E^m_D(S^q)\to\pi_q(G_{m-q},SO_{m-q}) see [Haefliger1966], [Skopenkov2005, \S3].

4 Classification

Theorem 4.1 [Levine1965, Corollary in p. 44], [Haefliger1966]. For m-n\ge3 the group E^m_D(S^n) is finite unless n=4k-1 and m\le6k, when E^m_D(S^n) is the sum of \Z and a finite group.

Theorem 4.2 (Haefliger-Milgram). We have the following table for the group E^m_D(S^n); in the whole table k\ge1; in the fifth column k\ne2; in the last two columns k\ge2:

\displaystyle \begin{array}{c|c|c|c|c|c|c|c} (m,n)     &2m\ge3n+4 &(6k,4k-1) &(6k+3,4k+1) &(7,4)   &(6k+4,4k+2) &(12k+7,8k+4) & (12k+1,8k)\\  \hline E^m_D(S^n)&0         &\Z        &\Z_2        &\Z_{12} &0           &\Z_4         &\Z_2\oplus\Z_2 \end{array}

Proof for the first four columns, and for the fifth column when k is odd, are presented in [Haefliger1966, 8.15] (or are deduced from that paper using simple calculations, cf. [Skopenkov2005, \S3]; (there is a typo in [Haefliger1966, 8.15]: C^{3k}_{4k−2}=0 should be C^{4k}_{8k−2}=0). The remaining results follow from [Haefliger1966, 8.15] and [Milgram1972, Theorem F]. Alternative proofs for the cases (m,n)=(7,4),(6,3) are given in [Skopenkov2005], [Crowley&Skopenkov2008], [Skopenkov2008].

Theorem 4.3 [Milgram1972, Corollary G]. We have E^m_D(S^n)=0 if and only if either 2m\ge3n+4, or (m,n)=(6k+4,4k+2), or (m,n)=(3k,2k) and k\equiv3,11\mod12, or (m,n)=(3k+2,2k+2) and k\equiv14,22\mod24.

For a description of 2-components of E^m_D(S^n) see [Milgram1972, Theorem F].

Observe that no reliable reference (containing complete proofs) of results announced in [Milgram1972] appeared. Thus, strictly speaking, the corresponding results are conjectures.

The lowest-dimensional unknown groups E^m_D(S^n) are E^8_D(S^5) and E^{11}_D(S^7). Hopefully application of Kreck surgery could be useful to find these groups, cf. [Skopenkov2005], [Crowley&Skopenkov2008], [Skopenkov2008].

For m\ge n+3 the group E^m_D(S^n) has been described as follows, in terms of exact sequences [Haefliger1966], cf. [Levine1965], [Haefliger1966a], [Milgram1972], [Habegger1986].

Theorem 4.4 [Haefliger1966]. For q\ge3 there is the following exact sequence of abelian groups:

\displaystyle  \ldots \to \pi_{n+1}(SG,SO) \xrightarrow{~u~} E^{n+q}_D(S^n) \xrightarrow{~a~} \pi_n(SG_q,SO_q) \xrightarrow{~s~} \pi_n(SG,SO)  \xrightarrow{~u~} E^{n+q-1}_D(S^{n-1})\to \ldots~.

Here SG_q be the space of maps S^{q-1} \to S^{q-1} of degree 1. Restricting an element of SO_q to S^{q-1} \subset \Rr^q identifies SO_q as a subspace of SG_q. Let SG:=SG_1\cup\ldots\cup SG_q\cup\ldots. Analogously define SO. Let s be the stabilization homomorphism. The attaching invariant a and the map u are defined in [Haefliger1966], see also [Skopenkov2005, \S3].

5 Some remarks on codimension 2 knots

For the best known specific case, i.e. for codimension 2 embeddings of spheres (in particular, for the classical theory of knots in \Rr^3), a complete readily calculable classification (in the sense of Remark 1.2 of [Skopenkov2016c]) is neither known nor expected at the time of writing. However, there is a vast literature on codimension 2 knots. See e.g. the interesting papers [Farber1981], [Farber1983], [Kearton1983], [Farber1984].

On the other hand, if one studies embeddings up to the weaker relation of concordance, then much is known. See e.g. [Levine1969a] and [Ranicki1998].

6 References

  • [Crowley&Skopenkov2008] D. Crowley and A. Skopenkov, A classification of smooth embeddings of 4-manifolds in 7-space, II, Intern. J. Math., 22:6 (2011) 731-757. Available at the arXiv:0808.1795.
  • [Farber1981] M. Sh. Farber, Classification of stable fibered knots, Mat. Sb. (N.S.), 115(157):2(6) (1981) 223–262.
  • [Farber1983] M. Sh. Farber, The classification of simple knots, Russian Math. Surveys, 38:5 (1983).

Personal tools
Namespaces
Variants
Actions
Navigation
Interaction
Toolbox