Knots, i.e. embeddings of spheres
This page has not been refereed. The information given here might be incomplete or provisional. |
Contents |
[edit] 1 Introduction
See general introduction on embeddings, notation and conventions in [Skopenkov2016c, 1, 3].
[edit] 2 Examples
Analogously to the Haefliger trefoil knot for one constructs a smooth embedding . For even this embedding is a generator of ; it is not smoothly isotopic to the standard embedding, but is piecewise smoothly isotopic to it [Haefliger1962]. It would be interesting to know if for odd this embedding is a generator of . The last phrase of [Haefliger1962t] suggests that this is true for .
[edit] 3 Readily calculable classification
For the group has been described in terms of exact sequences involving the homotopy groups of spheres and the homotopy groups of the pairs for and [Haefliger1966a], cf. [Levine1965], [Milgram1972], [Habegger1986]. Here is the space of maps of degree . Restricting an element of to identifies as a subspace of .
Some readily calculable corollaries of this classification are recalled in [Skopenkov2006, 3.3].
[edit] 4 Codimension 2 knots
For the best known specific case, i.e. for codimension 2 embeddings of spheres (in particular, for the classical theory of knots in ), a complete readily calculable classification (in the sense of Remark 1.1 of [Skopenkov2016c]) is neither known nor expected at the time of writing. However, there is a vast literature on codimension 2 knots, most of which does not present a readily calculable classification. See e.g. interesting papers [Farber1981], [Farber1983], [Kearton1983], [Farber1984].
On the other hand, if one studies embeddings up to the weaker relation of concordance, then much is known. See e.g. [Levine1969a] and [Ranicki1998].
[edit] 5 References
- [Farber1981] M. Sh. Farber, Classification of stable fibered knots, Mat. Sb. (N.S.), 115(157):2(6) (1981) 223–262.
- [Farber1983] M. Sh. Farber, The classification of simple knots, Russian Math. Surveys, 38:5 (1983).
- [Farber1984] M. Sh. Farber, An algebraic classification of some even-dimensional spherical knots I, II, Trans. Amer. Math. Soc. 281 (1984), 507-528; 529-570.
- [Habegger1986] N. Habegger, Knots and links in codimension greater than 2, Topology, 25:3 (1986) 253--260.
- [Haefliger1962] A. Haefliger, Knotted -spheres in -space, Ann. of Math. (2) 75 (1962), 452–466. MR0145539 (26 #3070) Zbl 0105.17407
- [Haefliger1962t] A. Haefliger, Differentiable links, Topology, 1 (1962) 241--244
- [Haefliger1966a] A. Haefliger, Enlacements de sphères en co-dimension supérieure à 2, Comment. Math. Helv.41 (1966), 51-72. MR0212818 (35 #3683) Zbl 0149.20801
- [Kearton1983] C. Kearton, An algebraic classification of certain simple even-dimensional knots, Trans. Amer. Math. Soc. 176 (1983), 1–53.
- [Levine1965] J. Levine, A classification of differentiable knots, Ann. of Math. (2) 82 (1965), 15–50. MR0180981 (31 #5211) Zbl 0136.21102
- [Levine1969a] J. Levine, Knot cobordism groups in codimension two, Comment. Math. Helv. 44 (1969), 229–244. MR0246314 (39 #7618) Zbl 0176.22101
- [Milgram1972] R. J. Milgram, On the Haefliger knot groups, Bull. of the Amer. Math. Soc., 78:5 (1972) 861--865.
- [Ranicki1998] A. Ranicki, High-dimensional knot theory, Springer-Verlag, 1998. MR1713074 (2000i:57044) Zbl 1059.19003
- [Skopenkov2006] A. Skopenkov, Embedding and knotting of manifolds in Euclidean spaces, in: Surveys in Contemporary Mathematics, Ed. N. Young and Y. Choi, London Math. Soc. Lect. Notes, 347 (2008) 248--342. Available at the arXiv:0604045.
- [Skopenkov2016c] A. Skopenkov, Embeddings in Euclidean space: an introduction to their classification, submitted to Bull. Man. Atl.