Equivariant intersection number of π-trivial immersions

(Difference between revisions)
Jump to: navigation, search
(Added more details about lifts vs paths)
(Major rework to make everything clearer, first step of several doing the lifts section)
Line 15: Line 15:
</wikitex>
</wikitex>
== Alternative Descriptions ==
+
== Alternative Description: Lifts ==
<wikitex>
<wikitex>
Let $f_1:N_1^{n_1} \looparrowright M^{n_1+n_2}$, $f_2:N_2^{n_2} \looparrowright M^{n_1+n_2}$ be $\pi$-trivial immersions. Let $b_i\in N_i$, $b\in M$ and $\widetilde{b}\in\widetilde{M}$ such that $p(\widetilde{b})=b$ be basepoints. Then there is a bijective correspondence $$ \{ \widetilde{f_i}:N_i \to \widetilde{M} : p\circ \widetilde{f_i}=f_i\} \longleftrightarrow \{ w:I \to M : w(0)=b, w(1) = f_i(b_i)\}/\pi_1(\widetilde{M}) $$ as explained in the page on [[Π-trivial_map|$\pi$-trivial maps]]. Thus there are two equivalent conventions we can use for the data of a $\pi$-trivial map: either a choice of lift or a choice of path from $b$ to $f_i(b_i)$ modulo $\pi_1(\widetilde{M})$. Both conventions have equivalent definitions for the equivariant intersection number of transversely intersecting $\pi$-trivial immersions.
+
As in the [[Intersection_number_of_immersions|non-equivariant case]] the equivariant intersection form has a geometric interpretation. Let $(\widetilde{M},\pi,w)$ be an [[Oriented cover|oriented cover]] of a connected manifold $M^{n_1+n_2}$ with $w$-twisted fundamental class $[\widetilde{M}]\in H_{n_1+n_2}(M;\Z^w)$ corresponding to the lift $\widetilde{b}\in\widetilde{M}$ of the basepoint $b\in M$. Let $f_1:N_1^{n_1} \looparrowright M^{n_1+n_2}$, $f_2:N_2^{n_2} \looparrowright M^{n_1+n_2}$ be transverse [[Π-trivial_map|$\pi$-trivial immersions]] of oriented manifolds with prescribed lifts $\widetilde{f}_1:N_1^{n_1} \looparrowright \widetilde{M}$, $\widetilde{f}_2:N_2^{n_2} \looparrowright \widetilde{M}$.
Lifts:
+
At a double point $x=(x_1,x_2)\in S_2(f_1,f_2)$ there is a unique covering translation $g(x):\widetilde{M}\to\widetilde{M}$ such that $$\widetilde{f}_2(x_2) = g(x)\widetilde{f}_1(x_1)\in \widetilde{M}.$$ The lifted immersions $g(x)\widetilde{f}_1:N_1\looparrowright\widetilde{M}$, $\widetilde{f}_2:N_2\looparrowright\widetilde{M}$ have a transverse double point $$\widetilde{x} = (x_1,x_2) \in S_2(g(x)\widetilde{f}_1,\widetilde{f}_2)$$ and there is defined an isomorphism of oriented $(n_1+n_2)$-dimensional vector spaces $$d\widetilde{f}(x) = (d(g(x)\widetilde{f}_1),d\widetilde{f}_2): \tau_{N_1}(x_1)\oplus \tau_{N_2}(x_2) \to \tau_{\widetilde{M}}(\widetilde{f}_1(x_1))$$ where $\tau_{N_1}(x_1)$, $\tau_{N_2}(x_2)$ and $\tau_{\widetilde{M}}(\widetilde{f}_1(x_1))$ all inherit orientations from the given orientations of $N_1$, $N_2$ and $\widetilde{M}$.
Let $f_1:N_1^{n_1} \looparrowright M^{n_1+n_2}$, $f_2:N_2^{n_2} \looparrowright M^{n_1+n_2}$ be $\pi$-trivial immersions with prescribed lifts to the oriented cover $\widetilde{f}_1: N_1 \to \widetilde{M}$, $\widetilde{f}_2:N_2 \to \widetilde{M}$. At a transverse double point $x=(x_1,x_2)\in S_2(f_1,f_2)$ let $g(x)\in \pi$ be the unique covering translation $\widetilde{M}\to \widetilde{M}$ such that $$\widetilde{f}_2(x_2) = g(x)\widetilde{f}_1(x_1)\in \widetilde{M}.$$
+
Note that the lifted immersions $g(x)\widetilde{f}_1:N_1\looparrowright\widetilde{M}$, $\widetilde{f}_2:N_2\looparrowright\widetilde{M}$ have a transverse double point $$\widetilde{x} = (x_1,x_2) \in S_2(g(x)\widetilde{f}_1,\widetilde{f}_2)$$ and there is defined an isomorphism of oriented $m$-dimensional vector spaces $$d\widetilde{f}(x) = (d(g(x)\widetilde{f}_1),d\widetilde{f}_2): \tau_{N_1}(x_1)\oplus \tau_{N_2}(x_2) \to \tau_{\widetilde{M}}(\widetilde{f}_1(x_1)).$$
+
The ''equivariant index'' $I(x)=I(x_1,x_2)\in\Z[\pi]$ of a transverse double point $x=(x_1,x_2)\in S_2(f_1,f_2)$ is defined to be $$I(x) = \epsilon(x)g(x)\in{\pm\pi}\subset \Z[\pi]$$ with
+
$$\epsilon(x) = \left\{ \begin{array}{cc} +1, & \mathrm{if}\; d\widetilde{f}(x) \;\mathrm{preserves}\; \mathrm{orientations} \\ -1, & \mathrm{otherwise}.\end{array}\right.$$
The ''equivariant index'' $I(x)\in\Z[\pi]$ of a transverse double point $x=(x_1,x_2)\in S_2(f_1,f_2)$ is $$I(x) = w(x)g(x)\in{\pm\pi}\subset \Z[\pi]$$ with
+
The ''geometric equivariant intersection number'' of $f_1$ and $f_2$ is then defined to be $$\lambda_{\Z[\pi]}^{\mathrm{geo}}(f_1,f_2):= \sum_{x\in S_2(f_1,f_2)}{I(x)}\in \Z[\pi].$$
$$w(x) = \left\{ \begin{array}{cc} +1, & \mathrm{if}\; d\widetilde{f}(x) \;\mathrm{preserves}\; \mathrm{orientations} \\ -1, & \mathrm{otherwise}.\end{array}\right.$$
+
+
The effect on the equivariant index of a change of order in the double point is given by $$I(x_2,x_1) = (-1)^{n_1n_2}\overline{I(x_1,x_2)}\in\Z[\pi]$$ with $\Z[\pi]\to \Z[\pi];a \mapsto \overline{a}$ the $w$-twisted involution $$a=\sum_{g\in\pi}n_gg \mapsto \sum_{g\in\pi}n_gw(g)g^{-1}\,(n_g\in\Z)$$ as $g(x_2,x_1) = g(x_1,x_2)^{-1}$ and the orientation of $\tau_{N_1}(x_1)\oplus \tau_{N_2}(x_2)$ disagrees withe the orientation of $\tau_{N_2}(x_2)\oplus \tau_{N_1}(x_1)$ if and only if $n_1$ and $n_2$ are both odd. Consequently $$\lambda_{\Z[\pi]}^{\mathrm{geo}}(f_2,f_1) = (-1)^{n_1n_2}\overline{\lambda_{\Z[\pi]}^{\mathrm{geo}}(f_1,f_2)}.$$
+
+
Observe that $\epsilon(x)$ agrees with the non-equivariant index $I(\widetilde{x})\in \Z$ of the transverse double point $\widetilde{x}=(x_1,x_2)\in S_2(g(x)\widetilde{f}_1,\widetilde{f}_2)$ from which it follows that $$\lambda_{\Z[\pi]}^{\mathrm{geo}}(f_1,f_2) = \sum_{g\in\pi}\lambda_{\Z}^{\mathrm{geo}}(g\widetilde{f}_1,\widetilde{f}_2)g\in \Z[\pi].$$
+
+
</wikitex>
+
== Alternative Description: Paths ==
+
<wikitex>
+
Let $b_i\in N_i$, $b\in M$ and $\widetilde{b}\in\widetilde{M}$ such that $p(\widetilde{b})=b$ be basepoints. Then there is a bijective correspondence $$ \{ \widetilde{f_i}:N_i \to \widetilde{M} : p\circ \widetilde{f_i}=f_i\} \longleftrightarrow \{ w:I \to M : w(0)=b, w(1) = f_i(b_i)\}/\pi_1(\widetilde{M}) $$ as explained in the page on [[Π-trivial_map|$\pi$-trivial maps]]. Thus there are two equivalent conventions we can use for the data of a $\pi$-trivial map: either a choice of lift or a choice of path from $b$ to $f_i(b_i)$ modulo $\pi_1(\widetilde{M})$. Both conventions have equivalent definitions for the equivariant intersection number of transversely intersecting $\pi$-trivial immersions.
Paths:
Let $f_1:N_1^{n_1} \looparrowright M^{n_1+n_2}$, $f_2:N_2^{n_2} \looparrowright M^{n_1+n_2}$ be $\pi$-trivial immersions with prescribed equivalence classes of paths $[w_i:I\to M]$ such that $w_i(0)=b$ and $w_i(1)=f_i(b_i)$ for $i=1,2$. At a transverse double point $x=(x_1,x_2)\in S_2(f_1,f_2)$ define $g(x)\in\pi$ as the loop $$g(x):= w_1 * f_1(u_1) * f_0(u_0)^-*w_0^-$$ where $u_i:I\to N_i$ is any path from $b_i$ to $x_i$. This loop is well-defined since a different choice of representative of $w_i$ or a different path $u_i$ results in a loop that differs from the other by an element of $\pi_1(\widetilde{M})$ or $(f_i)_*(\pi_1(N_i))$ which is trivial in $\pi$.
Let $f_1:N_1^{n_1} \looparrowright M^{n_1+n_2}$, $f_2:N_2^{n_2} \looparrowright M^{n_1+n_2}$ be $\pi$-trivial immersions with prescribed equivalence classes of paths $[w_i:I\to M]$ such that $w_i(0)=b$ and $w_i(1)=f_i(b_i)$ for $i=1,2$. At a transverse double point $x=(x_1,x_2)\in S_2(f_1,f_2)$ define $g(x)\in\pi$ as the loop $$g(x):= w_1 * f_1(u_1) * f_0(u_0)^-*w_0^-$$ where $u_i:I\to N_i$ is any path from $b_i$ to $x_i$. This loop is well-defined since a different choice of representative of $w_i$ or a different path $u_i$ results in a loop that differs from the other by an element of $\pi_1(\widetilde{M})$ or $(f_i)_*(\pi_1(N_i))$ which is trivial in $\pi$.
Line 35: Line 42:
Let $b$ be a basepoint of $M$, $b_i$ a basepoint of $N_i$ for $i=1,2$ and let $\widetilde{b}\in\widetilde{M}$ be some choice of lift. For a transverse double point $x=(x_1,x_2)\in S_2(f_1,f_2)$, an isotopy class of paths from $b_i$ to $x_i$ corresponds to a lift $\widetilde{f}_i$ as follows.
Let $b$ be a basepoint of $M$, $b_i$ a basepoint of $N_i$ for $i=1,2$ and let $\widetilde{b}\in\widetilde{M}$ be some choice of lift. For a transverse double point $x=(x_1,x_2)\in S_2(f_1,f_2)$, an isotopy class of paths from $b_i$ to $x_i$ corresponds to a lift $\widetilde{f}_i$ as follows.
The effect on the equivariant index of a change of order in the double point is given by $$I(x_2,x_1) = (-1)^{n_1n_2}\overline{I(x_1,x_2)}\in\Z[\pi]$$ with $\Z[\pi]\to \Z[\pi];a \mapsto \overline{a}$ the $w$-twisted involution $$a=\sum_{g\in\pi}n_gg \mapsto \sum_{g\in\pi}n_gw(g)g^{-1}\,(n_g\in\Z).$$
The ''geometric intersection number'' of transverse immersions $f_i:N_i^{n_i} \looparrowright M^{n_1+n_2}$ $(i=1,2)$ is
The ''geometric intersection number'' of transverse immersions $f_i:N_i^{n_i} \looparrowright M^{n_1+n_2}$ $(i=1,2)$ is

Revision as of 14:13, 30 May 2014

This page has not been refereed. The information given here might be incomplete or provisional.

Contents

1 Introduction

This is a work in progress! Initial blurb.

Let (\widetilde{M},\pi,w) be an oriented cover of a connected manifold M^{n_1+n_2} and let f_1:N_1^{n_1} \looparrowright M^{n_1+n_2}, f_2:N_2^{n_2} \looparrowright M^{n_1+n_2} be \pi-trivial immersions of manifolds in M. The equivariant intersection number \lambda([N_1],[N_2])\in\Z[\pi] counts with elements of \Z[\pi] the number of intersection points that the two immersions have. The intersection number is an obstruction to perturbing the immersions into being disjoint, which when zero can often be achieved using the Whitney trick.

The intersection number is also used in defining the intersection form of a 4k-dimensional manifold and in turn its signature - a very important invariant used in the classification of manifolds and the primary surgery obstruction.

2 Definition

The homology intersection pairing of M with respect to an oriented cover (\widetilde{M},\pi,w)
\displaystyle \begin{array}{rcl}\lambda: H_n(\widetilde{M})\times H_{m-n}(\widetilde{M}) &\to& \Z[\pi]\\ (a,b) &\mapsto& \lambda(a,b)\end{array}
is the sesquilinear pairing defined by
\displaystyle \lambda(a,b) = a^*(b)\in \Z[\pi]
with a^*\in H^{m-n}(\widetilde{M}) the Poincaré dual of a with respect to Universal Poincaré duality, such that
\displaystyle \lambda(b,a) = (-1)^{n(m-n)}\overline{\lambda(a,b)}\in \Z[\pi].
The algebraic intersection number of \pi-trivial maps f_1:N_1^{n_1} \to M^{n_1+n_2}, f_2:N_2^{n_2} \to M^{n_1+n_2} with prescribed lifts \widetilde{f}_1:N_1\to \widetilde{M}, \widetilde{f}_2:N_2\to\widetilde{M} is the homology intersection of the homology classes (\widetilde{f}_1)_*[N_1]\in H_{n_1}(\widetilde{M}), (\widetilde{f}_2)_*[N_2]\in H_{n_2}(\widetilde{M}):
\displaystyle \lambda^{\mathrm{alg}}(N_1,N_2) = \lambda((\widetilde{f}_1)_*[N_1],(\widetilde{f}_2)_*[N_2])\in \Z[\pi].


3 Alternative Description: Lifts


As in the non-equivariant case the equivariant intersection form has a geometric interpretation. Let (\widetilde{M},\pi,w) be an oriented cover of a connected manifold M^{n_1+n_2} with w-twisted fundamental class [\widetilde{M}]\in H_{n_1+n_2}(M;\Z^w) corresponding to the lift \widetilde{b}\in\widetilde{M} of the basepoint b\in M. Let f_1:N_1^{n_1} \looparrowright M^{n_1+n_2}, f_2:N_2^{n_2} \looparrowright M^{n_1+n_2} be transverse \pi-trivial immersions of oriented manifolds with prescribed lifts \widetilde{f}_1:N_1^{n_1} \looparrowright \widetilde{M}, \widetilde{f}_2:N_2^{n_2} \looparrowright \widetilde{M}.

At a double point x=(x_1,x_2)\in S_2(f_1,f_2) there is a unique covering translation g(x):\widetilde{M}\to\widetilde{M} such that
\displaystyle \widetilde{f}_2(x_2) = g(x)\widetilde{f}_1(x_1)\in \widetilde{M}.
The lifted immersions g(x)\widetilde{f}_1:N_1\looparrowright\widetilde{M}, \widetilde{f}_2:N_2\looparrowright\widetilde{M} have a transverse double point
\displaystyle \widetilde{x} = (x_1,x_2) \in S_2(g(x)\widetilde{f}_1,\widetilde{f}_2)
and there is defined an isomorphism of oriented (n_1+n_2)-dimensional vector spaces
\displaystyle d\widetilde{f}(x) = (d(g(x)\widetilde{f}_1),d\widetilde{f}_2): \tau_{N_1}(x_1)\oplus \tau_{N_2}(x_2) \to \tau_{\widetilde{M}}(\widetilde{f}_1(x_1))
where \tau_{N_1}(x_1), \tau_{N_2}(x_2) and \tau_{\widetilde{M}}(\widetilde{f}_1(x_1)) all inherit orientations from the given orientations of N_1, N_2 and \widetilde{M}. The equivariant index I(x)=I(x_1,x_2)\in\Z[\pi] of a transverse double point x=(x_1,x_2)\in S_2(f_1,f_2) is defined to be
\displaystyle I(x) = \epsilon(x)g(x)\in{\pm\pi}\subset \Z[\pi]
with
\displaystyle \epsilon(x) = \left\{ \begin{array}{cc} +1, & \mathrm{if}\; d\widetilde{f}(x) \;\mathrm{preserves}\; \mathrm{orientations} \\ -1, & \mathrm{otherwise}.\end{array}\right.
The geometric equivariant intersection number of f_1 and f_2 is then defined to be
\displaystyle \lambda_{\Z[\pi]}^{\mathrm{geo}}(f_1,f_2):= \sum_{x\in S_2(f_1,f_2)}{I(x)}\in \Z[\pi].
The effect on the equivariant index of a change of order in the double point is given by
\displaystyle I(x_2,x_1) = (-1)^{n_1n_2}\overline{I(x_1,x_2)}\in\Z[\pi]
with \Z[\pi]\to \Z[\pi];a \mapsto \overline{a} the w-twisted involution
\displaystyle a=\sum_{g\in\pi}n_gg \mapsto \sum_{g\in\pi}n_gw(g)g^{-1}\,(n_g\in\Z)
as g(x_2,x_1) = g(x_1,x_2)^{-1} and the orientation of \tau_{N_1}(x_1)\oplus \tau_{N_2}(x_2) disagrees withe the orientation of \tau_{N_2}(x_2)\oplus \tau_{N_1}(x_1) if and only if n_1 and n_2 are both odd. Consequently
\displaystyle \lambda_{\Z[\pi]}^{\mathrm{geo}}(f_2,f_1) = (-1)^{n_1n_2}\overline{\lambda_{\Z[\pi]}^{\mathrm{geo}}(f_1,f_2)}.
Observe that \epsilon(x) agrees with the non-equivariant index I(\widetilde{x})\in \Z of the transverse double point \widetilde{x}=(x_1,x_2)\in S_2(g(x)\widetilde{f}_1,\widetilde{f}_2) from which it follows that
\displaystyle \lambda_{\Z[\pi]}^{\mathrm{geo}}(f_1,f_2) = \sum_{g\in\pi}\lambda_{\Z}^{\mathrm{geo}}(g\widetilde{f}_1,\widetilde{f}_2)g\in \Z[\pi].


4 Alternative Description: Paths


Let b_i\in N_i, b\in M and \widetilde{b}\in\widetilde{M} such that p(\widetilde{b})=b be basepoints. Then there is a bijective correspondence
\displaystyle  \{ \widetilde{f_i}:N_i \to \widetilde{M} : p\circ \widetilde{f_i}=f_i\} \longleftrightarrow \{ w:I \to M : w(0)=b, w(1) = f_i(b_i)\}/\pi_1(\widetilde{M})
as explained in the page on \pi-trivial maps. Thus there are two equivalent conventions we can use for the data of a \pi-trivial map: either a choice of lift or a choice of path from b to f_i(b_i) modulo \pi_1(\widetilde{M}). Both conventions have equivalent definitions for the equivariant intersection number of transversely intersecting \pi-trivial immersions. Let f_1:N_1^{n_1} \looparrowright M^{n_1+n_2}, f_2:N_2^{n_2} \looparrowright M^{n_1+n_2} be \pi-trivial immersions with prescribed equivalence classes of paths [w_i:I\to M] such that w_i(0)=b and w_i(1)=f_i(b_i) for i=1,2. At a transverse double point x=(x_1,x_2)\in S_2(f_1,f_2) define g(x)\in\pi as the loop
\displaystyle g(x):= w_1 * f_1(u_1) * f_0(u_0)^-*w_0^-
where u_i:I\to N_i is any path from b_i to x_i. This loop is well-defined since a different choice of representative of w_i or a different path u_i results in a loop that differs from the other by an element of \pi_1(\widetilde{M}) or (f_i)_*(\pi_1(N_i)) which is trivial in \pi.

Definition of \epsilon(x):

Equivalence: Let b be a basepoint of M, b_i a basepoint of N_i for i=1,2 and let \widetilde{b}\in\widetilde{M} be some choice of lift. For a transverse double point x=(x_1,x_2)\in S_2(f_1,f_2), an isotopy class of paths from b_i to x_i corresponds to a lift \widetilde{f}_i as follows.


The geometric intersection number of transverse immersions f_i:N_i^{n_i} \looparrowright M^{n_1+n_2} (i=1,2) is

\displaystyle \lambda^{\mathrm{geo}}(N_1,N_2) = \sum_{x\in S_2(f_1,f_2)}{I(x)}\in \Z[\pi].

5 Equivalence of definitions

The algebraic and geometric intersection numbers agree. See REFERENCE


6 Examples

...

7 References

Personal tools
Namespaces
Variants
Actions
Navigation
Interaction
Toolbox