Equivariant intersection number of π-trivial immersions
This page has not been refereed. The information given here might be incomplete or provisional. |
Contents |
[edit] 1 Introduction
This is a work in progress! Initial blurb.
Let be an oriented cover of a connected manifold
and let
,
be
-trivial immersions of manifolds in
. The equivariant intersection number
counts with elements of
the number of intersection points that the two immersions have. The intersection number is an obstruction to perturbing the immersions into being disjoint, which when zero can often be achieved using the Whitney trick.
The intersection number is also used in defining the intersection form of a -dimensional manifold and in turn its signature - a very important invariant used in the classification of manifolds and the primary surgery obstruction.
[edit] 2 Definition


![\displaystyle \begin{array}{rcl}\lambda: H_n(\widetilde{M})\times H_{m-n}(\widetilde{M}) &\to& \Z[\pi]\\ (a,b) &\mapsto& \lambda(a,b)\end{array}](/images/math/0/b/4/0b4b53e55cd8acf4980d2c5535ca1469.png)
![\displaystyle \lambda(a,b) = a^*(b)\in \Z[\pi]](/images/math/b/0/f/b0fcae216fdc9e5f0f4c0c3575d15bcd.png)


![\displaystyle \lambda(b,a) = (-1)^{n(m-n)}\overline{\lambda(a,b)}\in \Z[\pi].](/images/math/7/a/9/7a959480e00e19774331363df44ca591.png)





![(\widetilde{f}_1)_*[N_1]\in H_{n_1}(\widetilde{M})](/images/math/c/4/6/c46e32560c8615e67d873ca8c7ff648d.png)
![(\widetilde{f}_2)_*[N_2]\in H_{n_2}(\widetilde{M})](/images/math/1/f/e/1febc73b71c95f1718e9acbbff3df2c1.png)
![\displaystyle \lambda^{\mathrm{alg}}(N_1,N_2) = \lambda((\widetilde{f}_1)_*[N_1],(\widetilde{f}_2)_*[N_2])\in \Z[\pi].](/images/math/0/a/5/0a5d108cbbc13596efbbc744b332d2cd.png)
[edit] 3 Alternative Description: Lifts
As in the non-equivariant case the equivariant intersection form has a geometric interpretation. Let be an oriented cover of a connected manifold
with
-twisted fundamental class
corresponding to the lift
of the basepoint
. Let
,
be transverse
-trivial immersions of oriented manifolds with prescribed lifts
,
.














![I(x)=I(x_1,x_2)\in\Z[\pi]](/images/math/5/f/b/5fb6d0c9d0e9599764435c2cba0faf4a.png)

![\displaystyle I(x) = \epsilon(x)g(x)\in{\pm\pi}\subset \Z[\pi]](/images/math/f/2/d/f2df2770489968fbd580e4eda396a118.png)



![\displaystyle \lambda_{\Z[\pi]}^{\mathrm{geo}}(f_1,f_2):= \sum_{x\in S_2(f_1,f_2)}{I(x)}\in \Z[\pi].](/images/math/d/3/e/d3ef600c38196816eeea0e2211cec383.png)
![\displaystyle I(x_2,x_1) = (-1)^{n_1n_2}\overline{I(x_1,x_2)}\in\Z[\pi]](/images/math/a/e/d/aede0071954c04f02bad98282381d414.png)
![\Z[\pi]\to \Z[\pi];a \mapsto \overline{a}](/images/math/a/8/7/a8741f19d2532c7dba3b6941e56c3b69.png)







![\displaystyle \lambda_{\Z[\pi]}^{\mathrm{geo}}(f_2,f_1) = (-1)^{n_1n_2}\overline{\lambda_{\Z[\pi]}^{\mathrm{geo}}(f_1,f_2)}.](/images/math/a/8/f/a8f6f60c47afc1e8d68b70373795fe68.png)



![\displaystyle \lambda_{\Z[\pi]}^{\mathrm{geo}}(f_1,f_2) = \sum_{g\in\pi}\lambda_{\Z}^{\mathrm{geo}}(g\widetilde{f}_1,\widetilde{f}_2)g\in \Z[\pi].](/images/math/2/7/d/27dd1648e043309d5177b8662ab2eab4.png)
[edit] 4 Alternative Description: Paths








Thus there are two equivalent conventions for the data of a -trivial map
: either a choice of lift of
or the homotopy class of a choice of path from
to
modulo
. In the previous section the geometric equivariant intersection number of
and
was defined using lifts as data. In this section we see the equivalent approach of using paths and prove the equivalence.



![[w_i:I\to M]](/images/math/6/0/2/60250747a77973d74f7dd12ff5dac28d.png)





![\displaystyle g(x):= [w_1 * f_1(u_1) * f_0(u_0)^-*w_0^-]](/images/math/5/0/4/5043b1602135d3f3c7956b79972a5dfe.png)












Definition of :
Equivalence:
Let be a basepoint of
,
a basepoint of
for
and let
be some choice of lift. For a transverse double point
, an isotopy class of paths from
to
corresponds to a lift
as follows.
The geometric intersection number of transverse immersions
is
![\displaystyle \lambda^{\mathrm{geo}}(N_1,N_2) = \sum_{x\in S_2(f_1,f_2)}{I(x)}\in \Z[\pi].](/images/math/1/d/1/1d191be0a6f9a0c566a9030f40a3ea2a.png)
[edit] 5 Equivalence of definitions
The algebraic and geometric intersection numbers agree. See REFERENCE
[edit] 6 Examples
...