Oberwolfach Surgery Seminar 2012: Discussion

From Manifold Atlas
Jump to: navigation, search

This page is for discussion following the seminar

[edit] 1 Recommended reading

Tibor's comments on 07/06/2012:

For a quick and very readable basic introduction to algebraic surgery I would very much recommend Andrew's article:

  • Foundations of algebraic surgery, Topology of high-dimensional manifolds, No. 1, 2 (Trieste, 2001), Abdus Salam Int. Cent. Theoret. Phys., Trieste (2002), 491–514. [Ranicki2002a]

Here the basic idea of algebraic surgery is explained and the relation to cobordisms.

For a quick introduction to the algebraic surgery exact sequence which involves the structure group \mathbb{S}_n (X) I would recommend Andrew's article

  • The structure set of an arbitrary space, the algebraic surgery exact sequence and the total surgery obstruction, School on High-dimensional Manifold Topology, 519--538, ICTP Trieste (2002). [Ranicki2002b]

A general note about the notation. There are two notations for the groups that measure the difference between the quadratic and symmetric L-groups. One is \hat{L}^{n} and the other NL^n. These groups have different definitions, hence the notation, but they are isomorphic, see Proposition 2.11 in [Ranicki1992].

Andrew recommended the lecture notes of Adam Mole from Andrew's 2008 Muenster course, which I can only agree with. Here you often find more motivation than in published articles.

Of those published articles, I would recommend to begin with the first two for the basics of algebraic surgery (but now this is on a higher level than those above):

  • The algebraic theory of surgery I., Proc. London Math. Soc. (3) 40, 87--192 (1980) [Ranicki1980]
  • The algebraic theory of surgery II., Proc. London Math. Soc. (3) 40, 193--283 (1980) [Ranicki1980a]

For the algebraic surgery exact sequence and the total surgery obstruction, of course there is the blue book

  • Algebraic L-theory and Topological Manifolds, Cambridge Tracts in Mathematics 102, CUP (1992) [Ranicki1992]

which can be accompanied by

  • The total surgery obstruction revisited by P.Kuehl, T.Macko and A.Mole arXiv:1104.50 (2011) [Kühl&Macko&Mole2011]

which is meant partly as a readable summary (mostly without proofs) of the setup of the algebraic surgery exact sequence and partly as a place where some more details in the technical parts of the proof that TSO is TSO are given.

Of course there is the original paper of Andrew:

  • The total surgery obstruction, Algebraic topology, Aarhus 1978 (Proc. Sympos., Univ. Aarhus, Aarhus, 1978), Springer (1979), 275–316 [Ranicki1979]

with most of the great ideas already present (although in a slightly different form sometimes, it's 35 years old, after all).

Finally, from a more modern point of view (using the language of \infty-categories), there are lecture notes of Jacob Lurie:

Links to all the material above can be found on Andrew's website. Some of it is under the links "Surgery bits and pieces" -> "Books, papers, theses, notes, links, etc": in particular Adam Mole's notes and Jacob Lurie's lecture notes may be found here. The easiest way to find items on Andrew's website is to just Google for their titles!

[edit] 2 References

Personal tools