Thom spaces (Ex)

(Difference between revisions)
Jump to: navigation, search
(Created page with "<wikitex>; {{beginthm|Exercise}} Let $X,X_1,X_2$ be $CW$-complexes and let $\xi,\xi_1,\xi_2$ be vector bundles over $X,X_1,X_2$ respectively. Denote by $\xi_1\times\xi_2$ th...")
m
Line 12: Line 12:
{{beginthm|Exercise}}
{{beginthm|Exercise}}
Let $\xi_k$ be the universal oriented vector bundle of rank $k$
Let $\xi_k$ be the universal oriented vector bundle of rank $k$
and let $(j_k,\overline{j_k})$: $\xi_k\oplus\mathbb{R}\to\xi_{k+1}$ be a bundle map.
+
and let $(j_k,\overline{j_k})$: $\xi_k\oplus\mathbb{R}\to\xi_{k+1}$ be a bundle map. Define
{{endthm}}
+
{{beginthm|Exercise}}
+
Define
+
$$
$$
\gamma_k:=\mathrm{id}_X\times\xi_k,\quad
\gamma_k:=\mathrm{id}_X\times\xi_k,\quad
(i_k,\overline{i_k}):=\mathrm{id}_X\times(j_k,\overline{j_k}).
(i_k,\overline{i_k}):=\mathrm{id}_X\times(j_k,\overline{j_k}).
$$
$$
Show that for all $k\geq0$ we have $V_{k+1}\circ\Omega_n(\overline{i_k})=V_k$. Define
+
Show that for all $k\geq0$ we have $V_{k+1}\circ\Omega_n(\overline{i_k})=V_k$.
+
{{endthm}}
+
{{beginthm|Exercise}}
+
Define
$$
$$
\mathrm{Th}(\overline{i_k}):\quad \Sigma\mathrm{Th}(\gamma_k)\cong\mathrm{Th}(\gamma_k\oplus\mathbb{R})\to\mathrm{Th}(\gamma_{k+1})
\mathrm{Th}(\overline{i_k}):\quad \Sigma\mathrm{Th}(\gamma_k)\cong\mathrm{Th}(\gamma_k\oplus\mathbb{R})\to\mathrm{Th}(\gamma_{k+1})

Revision as of 00:33, 27 March 2012

Exercise 0.1. Let X,X_1,X_2 be CW-complexes and let \xi,\xi_1,\xi_2 be vector bundles over X,X_1,X_2 respectively. Denote by \xi_1\times\xi_2 the product bundle over X_1\times X_2. Find homeomorphisms

\displaystyle    \mathrm{Th}(\xi_1)\wedge\mathrm{Th}(\xi_2)\cong\mathrm{Th}(\xi_1\times\xi_2),\quad   \Sigma\mathrm{Th}(\xi):=S^1\wedge\mathrm{Th}(\xi)\cong\mathrm{Th}(\xi\oplus\underline{\mathbb{R}}).

Exercise 0.2. Let \xi_k be the universal oriented vector bundle of rank k and let (j_k,\overline{j_k}): \xi_k\oplus\mathbb{R}\to\xi_{k+1} be a bundle map. Define

\displaystyle    \gamma_k:=\mathrm{id}_X\times\xi_k,\quad    (i_k,\overline{i_k}):=\mathrm{id}_X\times(j_k,\overline{j_k}).

Show that for all k\geq0 we have V_{k+1}\circ\Omega_n(\overline{i_k})=V_k.

Exercise 0.3. Define

\displaystyle    \mathrm{Th}(\overline{i_k}):\quad \Sigma\mathrm{Th}(\gamma_k)\cong\mathrm{Th}(\gamma_k\oplus\mathbb{R})\to\mathrm{Th}(\gamma_{k+1})

and

\displaystyle    s_k:=\pi_{n+k+1}(\mathrm{Th}(\overline{i_k}))\circ\Sigma:\quad    \pi_{n+k}(\mathrm{Th}(\gamma_k))\to\pi_{n+k+1}(\mathrm{Th}(\gamma_{k+1})),

where \Sigma is the suspension homomorphism. Show that for all k\geq0 we have P_n(\gamma_{k+1})\circ\Omega_n(\overline{i_k})=s_k\circ P_n(\gamma_k).

Question 0.4. Can we do similar things for unoriented manifolds, manifolds with spin structure,...?

References

Personal tools
Namespaces
Variants
Actions
Navigation
Interaction
Toolbox