Talk:Supplement II (Ex)

From Manifold Atlas
Revision as of 17:55, 1 June 2012 by Martin Palmer (Talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

Definition 0.1. Let K be a subcomplex of a simplicial complex L. The barycentric subdivision L^\prime is the simplicial complex with k-simplices \lbrace \tau_0 < \cdots < \tau_k \rbrace for \tau_i simplices of L (totally-ordered by inclusion), and K^\prime \subseteq L^\prime is the subcomplex whose k-simplices are \lbrace \tau_0 < \cdots < \tau_k \rbrace with \tau_i \in K for all i. The supplement \overline{K} of K in L is the subcomplex \overline{K}\subseteq L^\prime whose k-simplices are \lbrace \tau_0 < \cdots < \tau_k \rbrace with \tau_i \notin K for all i.

Definition 0.2. For two spaces X and Y, the join X*Y is by definition the quotient of X\times I\times Y by the equivalence relation given by

\displaystyle  \begin{aligned} (x,0,y) &\sim (x^\prime ,0,y)\\ (x,1,y) &\sim (x,1,y^\prime ); \end{aligned}

in other words X\times Y is collapsed to Y at the 0 end and is collapsed to X at the 1 end. So formally its elements are (x,t,y) subject to this equivalence relation, but we will write them as formal sums tx+(1-t)y. (This notation indicates that when t=0 it doesn't matter what x is and when t=1 it doesn't matter what y is.)

Construction 0.3. We will embed |L^\prime| \hookrightarrow |K^\prime|*|\overline{K}|. First, we embed the subspaces |K^\prime| and |\overline{K}| of |L^\prime| in the obvious way, i.e.

\displaystyle  \begin{aligned} x \mapsto 1x+0 \;\colon\; |K^\prime| &\hookrightarrow |K^\prime|*|\overline{K}|\\ y \mapsto 0+1y \;\colon\; |\overline{K}| &\hookrightarrow |K^\prime|*|\overline{K}|. \end{aligned}

Let \sigma be a simplex of L^\prime which is not in K^\prime or \overline{K}. So

\displaystyle  \sigma \;=\; \lbrace \tau_0 < \cdots < \tau_j < \tau_{j+1} < \cdots < \tau_k \rbrace

with \tau_0, \ldots, \tau_j in K and \tau_{j+1}, \ldots, \tau_k not in K (k>j\geq 0). A point in |\sigma| is given in barycentric coordinates by

\displaystyle  \sum_{i=0}^k s_i \tau_i \quad\text{with}\quad \sum_{i=0}^k s_i = 1.

We define the embedding |\sigma| \hookrightarrow |K^\prime|*|\overline{K}| by the formula

\displaystyle  \sum_{i=0}^k s_i \tau_i \;\mapsto\; \left( \sum_{i=0}^j s_i \right) \lbrace \tau_0 < \cdots < \tau_j \rbrace + \left( \sum_{i=j+1}^k s_i \right) \lbrace \tau_{j+1} < \cdots < \tau_k \rbrace .

These embeddings of |\sigma|, for \sigma\in L^\prime \setminus (K^\prime \cup \overline{K}), together with the embeddings of |K^\prime| and |\overline{K}| above, glue to give a well-defined embedding of |L^\prime| in |K^\prime|*|\overline{K}|. (Since the definitions agree on overlaps.)

Deformation retracts 0.4. Now define

\displaystyle  \begin{aligned} N &:= \lbrace tx+(1-t)y \in |K^\prime|*|\overline{K}| \;|\; t\geq \tfrac12 \rbrace \cap |L^\prime|\\ \overline{N} &:= \lbrace tx+(1-t)y \in |K^\prime|*|\overline{K}| \;|\; t\leq \tfrac12 \rbrace \cap |L^\prime|, \end{aligned}

and note that

\displaystyle  \begin{aligned} |K^\prime| &= \lbrace tx+(1-t)y \in |K^\prime|*|\overline{K}| \;|\; t=1 \rbrace \\ |\overline{K}| &= \lbrace tx+(1-t)y \in |K^\prime|*|\overline{K}| \;|\; t=0 \rbrace . \end{aligned}

There is then an obvious deformation retraction

\displaystyle  r\colon \quad tx+(1-t)y \mapsto x \qquad N \longrightarrow |K^\prime|,

where N\xrightarrow{r} |K^\prime| \hookrightarrow N is homotopic to the identity via

\displaystyle  (tx+(1-t)y,s) \mapsto (t+(1-t)s)x + (1-t)(1-s)y \qquad N\times I \longrightarrow N.

Similarly there is a deformation retraction

\displaystyle  \overline{r}\colon \quad tx+(1-t)y \mapsto y \qquad \overline{N} \longrightarrow |\overline{K}|,

with \overline{N}\xrightarrow{\overline{r}} |\overline{K}| \hookrightarrow \overline{N} homotopic to the identity via

\displaystyle  (tx+(1-t)y,s) \mapsto t(1-s)x + ((1-t)+st)y \qquad \overline{N} \times I \longrightarrow \overline{N}.
$ end and is collapsed to $X$ at the K be a subcomplex of a simplicial complex L. The barycentric subdivision L^\prime is the simplicial complex with k-simplices \lbrace \tau_0 < \cdots < \tau_k \rbrace for \tau_i simplices of L (totally-ordered by inclusion), and K^\prime \subseteq L^\prime is the subcomplex whose k-simplices are \lbrace \tau_0 < \cdots < \tau_k \rbrace with \tau_i \in K for all i. The supplement \overline{K} of K in L is the subcomplex \overline{K}\subseteq L^\prime whose k-simplices are \lbrace \tau_0 < \cdots < \tau_k \rbrace with \tau_i \notin K for all i.

Definition 0.2. For two spaces X and Y, the join X*Y is by definition the quotient of X\times I\times Y by the equivalence relation given by

\displaystyle  \begin{aligned} (x,0,y) &\sim (x^\prime ,0,y)\\ (x,1,y) &\sim (x,1,y^\prime ); \end{aligned}

in other words X\times Y is collapsed to Y at the 0 end and is collapsed to X at the 1 end. So formally its elements are (x,t,y) subject to this equivalence relation, but we will write them as formal sums tx+(1-t)y. (This notation indicates that when t=0 it doesn't matter what x is and when t=1 it doesn't matter what y is.)

Construction 0.3. We will embed |L^\prime| \hookrightarrow |K^\prime|*|\overline{K}|. First, we embed the subspaces |K^\prime| and |\overline{K}| of |L^\prime| in the obvious way, i.e.

\displaystyle  \begin{aligned} x \mapsto 1x+0 \;\colon\; |K^\prime| &\hookrightarrow |K^\prime|*|\overline{K}|\\ y \mapsto 0+1y \;\colon\; |\overline{K}| &\hookrightarrow |K^\prime|*|\overline{K}|. \end{aligned}

Let \sigma be a simplex of L^\prime which is not in K^\prime or \overline{K}. So

\displaystyle  \sigma \;=\; \lbrace \tau_0 < \cdots < \tau_j < \tau_{j+1} < \cdots < \tau_k \rbrace

with \tau_0, \ldots, \tau_j in K and \tau_{j+1}, \ldots, \tau_k not in K (k>j\geq 0). A point in |\sigma| is given in barycentric coordinates by

\displaystyle  \sum_{i=0}^k s_i \tau_i \quad\text{with}\quad \sum_{i=0}^k s_i = 1.

We define the embedding |\sigma| \hookrightarrow |K^\prime|*|\overline{K}| by the formula

\displaystyle  \sum_{i=0}^k s_i \tau_i \;\mapsto\; \left( \sum_{i=0}^j s_i \right) \lbrace \tau_0 < \cdots < \tau_j \rbrace + \left( \sum_{i=j+1}^k s_i \right) \lbrace \tau_{j+1} < \cdots < \tau_k \rbrace .

These embeddings of |\sigma|, for \sigma\in L^\prime \setminus (K^\prime \cup \overline{K}), together with the embeddings of |K^\prime| and |\overline{K}| above, glue to give a well-defined embedding of |L^\prime| in |K^\prime|*|\overline{K}|. (Since the definitions agree on overlaps.)

Deformation retracts 0.4. Now define

\displaystyle  \begin{aligned} N &:= \lbrace tx+(1-t)y \in |K^\prime|*|\overline{K}| \;|\; t\geq \tfrac12 \rbrace \cap |L^\prime|\\ \overline{N} &:= \lbrace tx+(1-t)y \in |K^\prime|*|\overline{K}| \;|\; t\leq \tfrac12 \rbrace \cap |L^\prime|, \end{aligned}

and note that

\displaystyle  \begin{aligned} |K^\prime| &= \lbrace tx+(1-t)y \in |K^\prime|*|\overline{K}| \;|\; t=1 \rbrace \\ |\overline{K}| &= \lbrace tx+(1-t)y \in |K^\prime|*|\overline{K}| \;|\; t=0 \rbrace . \end{aligned}

There is then an obvious deformation retraction

\displaystyle  r\colon \quad tx+(1-t)y \mapsto x \qquad N \longrightarrow |K^\prime|,

where N\xrightarrow{r} |K^\prime| \hookrightarrow N is homotopic to the identity via

\displaystyle  (tx+(1-t)y,s) \mapsto (t+(1-t)s)x + (1-t)(1-s)y \qquad N\times I \longrightarrow N.

Similarly there is a deformation retraction

\displaystyle  \overline{r}\colon \quad tx+(1-t)y \mapsto y \qquad \overline{N} \longrightarrow |\overline{K}|,

with \overline{N}\xrightarrow{\overline{r}} |\overline{K}| \hookrightarrow \overline{N} homotopic to the identity via

\displaystyle  (tx+(1-t)y,s) \mapsto t(1-s)x + ((1-t)+st)y \qquad \overline{N} \times I \longrightarrow \overline{N}.
$ end. So formally its elements are $(x,t,y)$ subject to this equivalence relation, but we will write them as formal sums $tx+(1-t)y$. (This notation indicates that when $t=0$ it doesn't matter what $x$ is and when $t=1$ it doesn't matter what $y$ is.) {{endrem}} {{beginrem|Construction}} We will embed $|L^\prime| \hookrightarrow |K^\prime|*|\overline{K}|$. First, we embed the subspaces $|K^\prime|$ and $|\overline{K}|$ of $|L^\prime|$ in the obvious way, i.e. $$ \begin{aligned} x \mapsto 1x+0 \;\colon\; |K^\prime| &\hookrightarrow |K^\prime|*|\overline{K}|\ y \mapsto 0+1y \;\colon\; |\overline{K}| &\hookrightarrow |K^\prime|*|\overline{K}|. \end{aligned} $$ Let $\sigma$ be a simplex of $L^\prime$ which is not in $K^\prime$ or $\overline{K}$. So $$ \sigma \;=\; \lbrace \tau_0 < \cdots < \tau_j < \tau_{j+1} < \cdots < \tau_k \rbrace $$ with $\tau_0, \ldots, \tau_j$ in $K$ and $\tau_{j+1}, \ldots, \tau_k$ not in $K$ ($k>j\geq 0$). A point in $|\sigma|$ is given in barycentric coordinates by $$ \sum_{i=0}^k s_i \tau_i \quad\text{with}\quad \sum_{i=0}^k s_i = 1. $$ We define the embedding $|\sigma| \hookrightarrow |K^\prime|*|\overline{K}|$ by the formula $$ \sum_{i=0}^k s_i \tau_i \;\mapsto\; \left( \sum_{i=0}^j s_i \right) \lbrace \tau_0 < \cdots < \tau_j \rbrace + \left( \sum_{i=j+1}^k s_i \right) \lbrace \tau_{j+1} < \cdots < \tau_k \rbrace . $$ These embeddings of $|\sigma|$, for $\sigma\in L^\prime \setminus (K^\prime \cup \overline{K})$, together with the embeddings of $|K^\prime|$ and $|\overline{K}|$ above, glue to give a well-defined embedding of $|L^\prime|$ in $|K^\prime|*|\overline{K}|$. (Since the definitions agree on overlaps.) {{endrem}} {{beginrem|Deformation retracts}} Now define $$ \begin{aligned} N &:= \lbrace tx+(1-t)y \in |K^\prime|*|\overline{K}| \;|\; t\geq \tfrac12 \rbrace \cap |L^\prime|\ \overline{N} &:= \lbrace tx+(1-t)y \in |K^\prime|*|\overline{K}| \;|\; t\leq \tfrac12 \rbrace \cap |L^\prime|, \end{aligned} $$ and note that $$ \begin{aligned} |K^\prime| &= \lbrace tx+(1-t)y \in |K^\prime|*|\overline{K}| \;|\; t=1 \rbrace \ |\overline{K}| &= \lbrace tx+(1-t)y \in |K^\prime|*|\overline{K}| \;|\; t=0 \rbrace . \end{aligned} $$ There is then an obvious deformation retraction $$ r\colon \quad tx+(1-t)y \mapsto x \qquad N \longrightarrow |K^\prime|, $$ where $N\xrightarrow{r} |K^\prime| \hookrightarrow N$ is homotopic to the identity via $$ (tx+(1-t)y,s) \mapsto (t+(1-t)s)x + (1-t)(1-s)y \qquad N\times I \longrightarrow N. $$ Similarly there is a deformation retraction $$ \overline{r}\colon \quad tx+(1-t)y \mapsto y \qquad \overline{N} \longrightarrow |\overline{K}|, $$ with $\overline{N}\xrightarrow{\overline{r}} |\overline{K}| \hookrightarrow \overline{N}$ homotopic to the identity via $$ (tx+(1-t)y,s) \mapsto t(1-s)x + ((1-t)+st)y \qquad \overline{N} \times I \longrightarrow \overline{N}. $$ {{endrem}} K be a subcomplex of a simplicial complex L. The barycentric subdivision L^\prime is the simplicial complex with k-simplices \lbrace \tau_0 < \cdots < \tau_k \rbrace for \tau_i simplices of L (totally-ordered by inclusion), and K^\prime \subseteq L^\prime is the subcomplex whose k-simplices are \lbrace \tau_0 < \cdots < \tau_k \rbrace with \tau_i \in K for all i. The supplement \overline{K} of K in L is the subcomplex \overline{K}\subseteq L^\prime whose k-simplices are \lbrace \tau_0 < \cdots < \tau_k \rbrace with \tau_i \notin K for all i.

Definition 0.2. For two spaces X and Y, the join X*Y is by definition the quotient of X\times I\times Y by the equivalence relation given by

\displaystyle  \begin{aligned} (x,0,y) &\sim (x^\prime ,0,y)\\ (x,1,y) &\sim (x,1,y^\prime ); \end{aligned}

in other words X\times Y is collapsed to Y at the 0 end and is collapsed to X at the 1 end. So formally its elements are (x,t,y) subject to this equivalence relation, but we will write them as formal sums tx+(1-t)y. (This notation indicates that when t=0 it doesn't matter what x is and when t=1 it doesn't matter what y is.)

Construction 0.3. We will embed |L^\prime| \hookrightarrow |K^\prime|*|\overline{K}|. First, we embed the subspaces |K^\prime| and |\overline{K}| of |L^\prime| in the obvious way, i.e.

\displaystyle  \begin{aligned} x \mapsto 1x+0 \;\colon\; |K^\prime| &\hookrightarrow |K^\prime|*|\overline{K}|\\ y \mapsto 0+1y \;\colon\; |\overline{K}| &\hookrightarrow |K^\prime|*|\overline{K}|. \end{aligned}

Let \sigma be a simplex of L^\prime which is not in K^\prime or \overline{K}. So

\displaystyle  \sigma \;=\; \lbrace \tau_0 < \cdots < \tau_j < \tau_{j+1} < \cdots < \tau_k \rbrace

with \tau_0, \ldots, \tau_j in K and \tau_{j+1}, \ldots, \tau_k not in K (k>j\geq 0). A point in |\sigma| is given in barycentric coordinates by

\displaystyle  \sum_{i=0}^k s_i \tau_i \quad\text{with}\quad \sum_{i=0}^k s_i = 1.

We define the embedding |\sigma| \hookrightarrow |K^\prime|*|\overline{K}| by the formula

\displaystyle  \sum_{i=0}^k s_i \tau_i \;\mapsto\; \left( \sum_{i=0}^j s_i \right) \lbrace \tau_0 < \cdots < \tau_j \rbrace + \left( \sum_{i=j+1}^k s_i \right) \lbrace \tau_{j+1} < \cdots < \tau_k \rbrace .

These embeddings of |\sigma|, for \sigma\in L^\prime \setminus (K^\prime \cup \overline{K}), together with the embeddings of |K^\prime| and |\overline{K}| above, glue to give a well-defined embedding of |L^\prime| in |K^\prime|*|\overline{K}|. (Since the definitions agree on overlaps.)

Deformation retracts 0.4. Now define

\displaystyle  \begin{aligned} N &:= \lbrace tx+(1-t)y \in |K^\prime|*|\overline{K}| \;|\; t\geq \tfrac12 \rbrace \cap |L^\prime|\\ \overline{N} &:= \lbrace tx+(1-t)y \in |K^\prime|*|\overline{K}| \;|\; t\leq \tfrac12 \rbrace \cap |L^\prime|, \end{aligned}

and note that

\displaystyle  \begin{aligned} |K^\prime| &= \lbrace tx+(1-t)y \in |K^\prime|*|\overline{K}| \;|\; t=1 \rbrace \\ |\overline{K}| &= \lbrace tx+(1-t)y \in |K^\prime|*|\overline{K}| \;|\; t=0 \rbrace . \end{aligned}

There is then an obvious deformation retraction

\displaystyle  r\colon \quad tx+(1-t)y \mapsto x \qquad N \longrightarrow |K^\prime|,

where N\xrightarrow{r} |K^\prime| \hookrightarrow N is homotopic to the identity via

\displaystyle  (tx+(1-t)y,s) \mapsto (t+(1-t)s)x + (1-t)(1-s)y \qquad N\times I \longrightarrow N.

Similarly there is a deformation retraction

\displaystyle  \overline{r}\colon \quad tx+(1-t)y \mapsto y \qquad \overline{N} \longrightarrow |\overline{K}|,

with \overline{N}\xrightarrow{\overline{r}} |\overline{K}| \hookrightarrow \overline{N} homotopic to the identity via

\displaystyle  (tx+(1-t)y,s) \mapsto t(1-s)x + ((1-t)+st)y \qquad \overline{N} \times I \longrightarrow \overline{N}.
Retrieved from "http://www.map.mpim-bonn.mpg.de/index.php?title=Talk:Supplement_II_(Ex)&oldid=9288"
Personal tools
Namespaces
Variants
Actions
Navigation
Interaction
Toolbox