Talk:Normal bordism - definitions (Ex)

From Manifold Atlas
Revision as of 12:11, 2 April 2012 by Andreas Hermann (Talk | contribs)
Jump to: navigation, search

In both parts let X be a connected finite Poincare complex of dimension n and let k\geq0.

Part 1

The following definition of the set of normal maps \mathcal{N}_n(X,k) is similar to [Lück2001, Definition 3.46]. We define

\displaystyle  \mathcal{N}_n(X,k):= \left\{ [\xi,M,i,f,\overline{f}] | \begin{array}{l} \xi\textrm{ vector bundle of rank }k\textrm{ over }X,\,  M\textrm{ closed manifold of dimension }n,\, i:\,M\to\mathbb{R}^{n+k}\textrm{ embedding},\, (f,\overline{f}):\,\nu(M,i)\to\xi\textrm{ bundle map},\, f:\,M\to X\textrm{ of degree }1 \end{array} \right\}

where we identify (\xi_0,M_0,i_0,f_0,\overline{f_0})\sim(\xi_1,M_1,i_1,f_1,\overline{f_1}) iff

1) There exists a compact manifold W of dimension n+1 whose boundary can be written as \partial W=\partial_0W\amalg\partial_1W.

2) There exists an embedding I: W\to\mathbb{R}^{n+k}\times[0,1] such that for j=0,1 we have I^{-1}(\mathbb{R}^{n+k}\times\{j\})=\partial_jW and W meets \mathbb{R}^{n+k}\times\{j\} transversally.

3) There exists a vector bundle \eta: E'\to X\times[0,1] of rank k and for j=0,1 there exist vector bundle isomorphisms (\mathrm{id}_X,H_j): \eta|_{X\times\{j\}}\to\xi_j.

4) There exists a bundle map (F,\overline{F}): \nu(W,I)\to\eta such that for j=0,1 we have F(\partial_jW)\subset X\times\{j\} and such that F: (W,\partial W)\to(X\times[0,1],X\times\partial[0,1]) has degree one as a map between Poincare pairs.

5) For j=0,1 there exist diffeomorphisms U_j: \mathbb{R}^{n+k}\to\mathbb{R}^{n+k}\times\{j\} such that

a) U_j|_{M_j}: M_j\to\partial_jW is a diffeomorphism

b) F\circ U_j|_{M_j}=f_j

c) the induced bundle map (U_j,\nu(U_j)): \nu(M_j,i_j)\to\nu(W,I)|_{\partial_jW} satisfies H_j\circ\overline{F}\circ\nu(U_j)=\overline{f_j}.

Part 2

The following definition of the set of tangential normal maps \mathcal{N}^T_n(X,k) differs from [Lück2001, Definition 3.50]. We define

\displaystyle  \mathcal{N}^T_n(X,k):= \left\{ [\xi,M,a,f,\overline{f}] | \begin{array}{l} \xi\textrm{ vector bundle of rank }k\textrm{ over }X,\,  M\textrm{ closed manifold of dimension }n,\, a\in\mathbb{N}_0,\, (f,\overline{f}):\,TM\oplus\underline{\mathbb{R}^a}\to\xi\textrm{ bundle map},\, f:\,M\to X\textrm{ of degree }1 \end{array} \right\}

where we identify (\xi_0,M_0,a_0,f_0,\overline{f_0})\sim(\xi_1,M_1,a_1,f_1,\overline{f_1}) iff

1) There exists a compact manifold W of dimension n+1 whose boundary can be written as \partial W=\partial_0W\amalg\partial_1W.

2) There exists a vector bundle \eta: E'\to X\times[0,1] and there exist b\in\mathbb{N}_0 and a bundle map (F,\overline{F}): TW\oplus\underline{\mathbb{R}^b}\to\eta such that for j=0,1 we have F(\partial_jW)\subset X\times\{j\} and such that F: (W,\partial W)\to(X\times[0,1],X\times\partial[0,1]) has degree one as a map between Poincare pairs.

3) For j=0,1 there exist diffeomorphisms U_j: M_j\to\partial_jW such that F\circ U_j=f_j.

4) For j=0,1 there exist bundle isomorphisms (\mathrm{id}_X,V_j): \xi_j\oplus\underline{\mathbb{R}^{b-a_j+1}}\to\eta|_{X\times\{j\}} such that

\displaystyle  \xymatrix{TM_j\oplus\underline{\mathbb{R}}\oplus\underline{\mathbb{R}^b}  \ar[rr]^{\overline{f_j}\oplus\mathrm{id}_{\underline{\mathbb{R}^{b-a_j+1}}}}  \ar[d]_{TU_j\oplus n_j\oplus\mathrm{id}_{\underline{\mathbb{R}^b}}} & &  \xi_j\oplus\underline{\mathbb{R}^{b-a_j+1}}  \ar[d]^{V_j}\\ TW|_{\partial_jW}\oplus\underline{\mathbb{R}^b} \ar[rr]^{\overline{F}|_{\partial_jW}} & & \eta|_{X\times\{j\}} }

commutes. Here TU_j: TM_j\to TW|_{\partial_jW} is the differential of U_j and n_j: \underline{\mathbb{R}}\to TW|_{\partial_jW} is given by an inward normal field of TW|_{\partial_jW}.

Personal tools
Namespaces
Variants
Actions
Navigation
Interaction
Toolbox