Quadratic forms I (Ex)

From Manifold Atlas
(Difference between revisions)
Jump to: navigation, search
(Created page with "<wikitex>; We follow {{citeD|Lück2001|Definition 4.22}} Let $P$ be a finitely generated free $\Lambda$ module, $\Lambda$ a ring with involution. Let $$ T \colon \textup{Hom...")
m
Line 9: Line 9:
{{endthm}}
{{endthm}}
</wikitex>
</wikitex>
== References ==
+
{{beginrem|Remark}}
{{#RefList:}}
+
See also {{citeD|Ranicki1980|Section 2}}.
+
{{endrem}}
[[Category:Exercises]]
[[Category:Exercises]]
[[Category:Exercises without solution]]
[[Category:Exercises without solution]]

Latest revision as of 18:22, 29 May 2012

We follow [Lück2001, Definition 4.22] Let P be a finitely generated free \Lambda module, \Lambda a ring with involution. Let

\displaystyle  T \colon \textup{Hom}_{\Lambda} (P, P^*) \to \textup{Hom}_{\Lambda} (P, P^*), \quad f \mapsto f^* \circ e(P)

be the involution where e(P) \colon P \to P^{**} is the canonical isomorphism given by evaluation. Define

\displaystyle  Q_\epsilon(P) : = \textup{coker}(1 - \epsilon T) \colon \left( \textup{Hom}_{\Lambda} (P, P^*) \to \textup{Hom}_{\Lambda} (P, P^*) \right).

Exercise 0.1. Show that \theta \in Q_\epsilon(P) defines a unique \epsilon-quadratic form on P and that every such form arises in this way.

Remark 0.2. See also [Ranicki1980, Section 2].

Personal tools
Namespaces
Variants
Actions
Navigation
Interaction
Toolbox