Poincaré duality IV (Ex)

From Manifold Atlas
(Difference between revisions)
Jump to: navigation, search
m
m
(4 intermediate revisions by 2 users not shown)
Line 9: Line 9:
'''Hint''': Note that $ \Zz^{\omega} \otimes_{\Zz \pi}(C_* \otimes_{\Zz} D_*)_n=\prod_{k \in \Zz} \Zz^{\omega} \otimes_{\Zz\pi}(C_{n-k} \otimes_{\Zz} D_k) $ with boundary map $ d=id \otimes ((-1)^kd_C \otimes id + id \otimes d_D) $ and that $Hom_{\Zz\pi}(C^{-*},D_*)_n=\prod_{k \in \Zz}Hom_{\Zz\pi}((C^{-*})_{k-n},D_k)$ with boundary map $d(f)=d_D \circ f-(-1)^nf \circ d_{C^{-*}}$.
'''Hint''': Note that $ \Zz^{\omega} \otimes_{\Zz \pi}(C_* \otimes_{\Zz} D_*)_n=\prod_{k \in \Zz} \Zz^{\omega} \otimes_{\Zz\pi}(C_{n-k} \otimes_{\Zz} D_k) $ with boundary map $ d=id \otimes ((-1)^kd_C \otimes id + id \otimes d_D) $ and that $Hom_{\Zz\pi}(C^{-*},D_*)_n=\prod_{k \in \Zz}Hom_{\Zz\pi}((C^{-*})_{k-n},D_k)$ with boundary map $d(f)=d_D \circ f-(-1)^nf \circ d_{C^{-*}}$.
</wikitex>
+
+
+
{{beginthm|Exercise}} \label{homol_hom}
+
Let $ C_* $ and $ D_* $ be $ \Zz\pi $-chain complexes. Show that for the $ n $-th homology of the complex $ hom_{\Zz\pi}(C_*,D_*) $ we have
+
$$ H_n(hom_{\Zz\pi}(C_*,D_*))= [ \Sigma^n C_*,D_*]_{\Zz\pi} $$
+
where $ (\sum^nC_*)_k:=C_{k-n} $ denotes the shifted complex with boundary map $ d_{\sum C}:=(-1)^nd_C $.
+
{{endthm}}
+
+
'''Hint''': use the boundary map of Exercise \ref{chain_map}.
+
+
{{beginthm|Exercise}}
+
Deduce from the Poincare homotopy equivalence $ ? \cap [X]:C^{n-*}(\widetilde X) \rightarrow C_*(\widetilde X) $ that
+
$$ H_k(X,\Zz^{\omega}) \cong H^{n-k}(X,\Zz):=H_k(C^{n-*}(X)) $$
+
as $ \Zz $-Modules.
+
{{endthm}}
+
+
{{beginthm|Exercise}}
+
Let $(X,A)$ be a Poincare pair with $X$ an $n$-dimensional, connected, finite CW-complex and $A\subset X$ an $(n-1)$-dimensional subcomplex, an orientation homomorphism $\omega_X : \pi \longrightarrow \{\pm 1\}$ and a fundamental class $[X,A]\in H_n(X,A;\Zz^{\omega_X}):=H_n(\Zz^{\omega_X}\otimes_{\Zz\pi}C_*(\tilde{X},\tilde{A}))$. That means, for a universal covering $p:\tilde{X}\longrightarrow X$ and $\tilde{A}:=p^{-1}(A)$ the $\Zz\pi$-chain maps $?\cap [X,A]:C^{n-*}(\tilde{X},\tilde{A})\longrightarrow C_*(\tilde{X})$ and $?\cap [X,A]:C^{n-*}(\tilde{X})\longrightarrow C_*(\tilde{X},\tilde{A})$ are $\Zz\pi$-chain homotopy equivalences.
+
+
Show that the components $C\in\pi_0(A)$ of $A$ inherit the structure of a finite $(n-1)$-dimensional Poincare complex, i.e. that there is an induced orientation homomorphism $\omega_C : \pi_1(C) \longrightarrow \{\pm 1\}$ and an induced fundamental class $[C]\in H_{n-1}(C;\Zz^{\omega_C})$, such that
+
$$ ?\cap [C]:C^{n-1-*}(\tilde{C})\longrightarrow C_*(\tilde{C})$$
+
is a $\Zz\pi$-chain homotopy equivalence.
+
{{endthm}}
+
+
'''Hint''': Tensorize both sides with $ \Zz^{\omega} $ and consider the induced map.
The exercises and hints on this page were sent by Alex Koenen and Arkadi Schelling.
The exercises and hints on this page were sent by Alex Koenen and Arkadi Schelling.
== References ==
+
</wikitex>
{{#RefList:}}
+
<!-- == References ==
+
{{#RefList:}} -->
[[Category:Exercises]]
[[Category:Exercises]]
+
[[Category:Exercises without solution]]

Latest revision as of 14:57, 1 April 2012

Exercise 0.1. Let C_* and D_* be \Zz\pi-chain complexes and

\displaystyle  s: \Zz^{\omega} \otimes_{\Zz\pi}(C_* \otimes_{\Zz} D_*) \rightarrow Hom_{\Zz\pi}(C^{-*},D_*)

be defined by sending 1 \otimes x \otimes y \in \Zz^{\omega} \otimes_{\Zz \pi}(C_{n-k} \otimes_{\Zz} D_k) to the map

\displaystyle  s(1 \otimes x \otimes y): (C^{-*})_{k-n} \rightarrow D_k, (\phi:C_{n-k} \rightarrow \Zz \pi) \mapsto \overline{\phi(x)}\cdot y

Show that s is a \Zz-chain map.

Hint: Note that \Zz^{\omega} \otimes_{\Zz \pi}(C_* \otimes_{\Zz} D_*)_n=\prod_{k \in \Zz} \Zz^{\omega} \otimes_{\Zz\pi}(C_{n-k} \otimes_{\Zz} D_k) with boundary map d=id \otimes ((-1)^kd_C \otimes id + id \otimes d_D) and that Hom_{\Zz\pi}(C^{-*},D_*)_n=\prod_{k \in \Zz}Hom_{\Zz\pi}((C^{-*})_{k-n},D_k) with boundary map d(f)=d_D \circ f-(-1)^nf \circ d_{C^{-*}}.


Exercise 0.2. Let C_* and D_* be \Zz\pi-chain complexes. Show that for the n-th homology of the complex hom_{\Zz\pi}(C_*,D_*) we have

\displaystyle  H_n(hom_{\Zz\pi}(C_*,D_*))= [ \Sigma^n C_*,D_*]_{\Zz\pi}

where (\sum^nC_*)_k:=C_{k-n} denotes the shifted complex with boundary map d_{\sum C}:=(-1)^nd_C.

Hint: use the boundary map of Exercise 0.1.

Exercise 0.3. Deduce from the Poincare homotopy equivalence ? \cap [X]:C^{n-*}(\widetilde X) \rightarrow C_*(\widetilde X) that

\displaystyle  H_k(X,\Zz^{\omega}) \cong H^{n-k}(X,\Zz):=H_k(C^{n-*}(X))

as \Zz-Modules.

Exercise 0.4. Let (X,A) be a Poincare pair with X an n-dimensional, connected, finite CW-complex and A\subset X an (n-1)-dimensional subcomplex, an orientation homomorphism \omega_X : \pi \longrightarrow \{\pm 1\} and a fundamental class [X,A]\in H_n(X,A;\Zz^{\omega_X}):=H_n(\Zz^{\omega_X}\otimes_{\Zz\pi}C_*(\tilde{X},\tilde{A})). That means, for a universal covering p:\tilde{X}\longrightarrow X and \tilde{A}:=p^{-1}(A) the \Zz\pi-chain maps ?\cap [X,A]:C^{n-*}(\tilde{X},\tilde{A})\longrightarrow C_*(\tilde{X}) and ?\cap [X,A]:C^{n-*}(\tilde{X})\longrightarrow C_*(\tilde{X},\tilde{A}) are \Zz\pi-chain homotopy equivalences.

Show that the components C\in\pi_0(A) of A inherit the structure of a finite (n-1)-dimensional Poincare complex, i.e. that there is an induced orientation homomorphism \omega_C : \pi_1(C) \longrightarrow \{\pm 1\} and an induced fundamental class [C]\in H_{n-1}(C;\Zz^{\omega_C}), such that

\displaystyle  ?\cap [C]:C^{n-1-*}(\tilde{C})\longrightarrow C_*(\tilde{C})

is a \Zz\pi-chain homotopy equivalence.

Hint: Tensorize both sides with \Zz^{\omega} and consider the induced map.

The exercises and hints on this page were sent by Alex Koenen and Arkadi Schelling.

Personal tools
Namespaces
Variants
Actions
Navigation
Interaction
Toolbox