Linking form

From Manifold Atlas
Revision as of 13:13, 28 March 2013 by Markpowell13 (Talk | contribs)
Jump to: navigation, search

This page has not been refereed. The information given here might be incomplete or provisional.

Contents

1 Background: intersection forms

After Poincaré and Lefschetz, a closed oriented manifold N^{n} has a bilinear intersection form defined on its homology. Given a {k}--chain p \in C_{k}(N;\mathbb{Z}) and an (n-k)--chain q \in C_{n-k}(N;\mathbb{Z}) which is transverse to q, the signed count of the intersections between p and q gives an intersection number \langle\, p \, , \, q\, \rangle \in \mathbb{Z}.


The intersection form is defined by

\displaystyle I_N \colon H_k(N;\mathbb{Z}) \times H_{n-k}(N;\mathbb{Z}) \to  \mathbb{Z}; ([p],[q]) \mapsto  \langle p, q \rangle

and is such that

\displaystyle I_N(x,y) = (-)^{k(n-k)}I_N(y,x).

2 Definition of the linking form

By bilinearity, the intersection form vanishes on the torsion part of the homology. The torsion part of an abelian group P is the subgroup
\displaystyle TP:= \{p \in P \,|\, ap=0 \text{ for some } a \in \mathbb{Z}\}.

The analogue of the intersection pairing for the torsion part of the homology of a closed oriented manifold N^n is the bilinear \mathbb{Q}/\mathbb{Z}--valued linking form, which is due to Seifert [Seifert1933]:

\displaystyle L_N \colon TH_{\ell}(N;\mathbb{Z}) \times TH_{n-\ell-1}(N;\mathbb{Z}) \to \mathbb{Q}/\mathbb{Z}

such that

\displaystyle L_N(x,y) = (-)^{\ell(n-\ell-1)}L_N(y,x)

and computed as follows. Given [x] \in TH_\ell(N;\mathbb{Z}) and [y] \in TH_{n-\ell-1}(N;\mathbb{Z}) represented by cycles x \in C_\ell(N;\mathbb{Z}) and y \in C_{n-\ell-1}(N,\mathbb{Z}), let w \in C_{\ell+1}(N;\mathbb{Z}) be such that \partial w = sy, for some s \in \mathbb{Z}. Then we define:

\displaystyle L_N([x],[y]) := \langle x, w \rangle/s \in \mathbb{Q}/\mathbb{Z}.

The resulting element is independent of the choices of x,y,w and s.

3 Definition via homology

Let x \in TH_{\ell}(N;\mathbb{Z}) and let y \in TH_{n-\ell-1}(N;\mathbb{Z}). Note that we have Poincaré duality isomorphisms

\displaystyle PD \colon TH_{\ell}(N;\mathbb{Z}) \xrightarrow{\cong} TH^{n-\ell}(N;\mathbb{Z})

and

\displaystyle PD \colon TH_{n-\ell-1}(N;\mathbb{Z}) \xrightarrow{\cong} TH^{\ell+1}(N;\mathbb{Z}).

Associated to the short exact sequence of coefficients

\displaystyle 0 \to \mathbb{Z} \to \mathbb{Q} \to \mathbb{Q}/\mathbb{Z} \to 0

is the Bockstein long exact sequence in cohomology.

\displaystyle H^{n-\ell-1}(N;\mathbb{Q}) \to H^{n-\ell-1}(N;\mathbb{Q}/\mathbb{Z}) \xrightarrow{\beta} H^{n-\ell}(N;\mathbb{Z}) \to H^{n-\ell-1}(N;\mathbb{Q}).

Choose z \in TH^{n-\ell-1}(N;\mathbb{Q}/\mathbb{Z}) such that \beta(z) = PD(x). This is always possible since torsion elements in H^{n-\ell}(N;\mathbb{Z}) map to zero in H^{n-\ell}(N;\mathbb{Q}). There is a cup product:

\displaystyle \cup \colon  H^{n-\ell-1}(N;\mathbb{Q}/\mathbb{Z}) \otimes H^{\ell+1}(N;\mathbb{Z}) \to  H^{n}(N;\mathbb{Q}/\mathbb{Z}).

Compute a:= z \cup  PD(y). Then the Kronecker pairing:

\displaystyle \langle a,[N] \rangle \in \mathbb{Q}/\mathbb{Z}

yields L_N(x,y).

4 Example of 3-dimensional projective space

As an example, let N = \mathbb{RP}^3, so that \ell=1 and n=3. Now H_1(\mathbb{RP}^3;\mathbb{Z}) \cong \mathbb{Z}_2. Let \theta \in H_1(\mathbb{RP}^3;\mathbb{Z}) be the non-trivial element. To compute the linking L_{\mathbb{RP}^3}(\theta,\theta), consider \mathbb{RP}^3 modelled as D^3/\sim, with antipodal points on \partial D^2 identified, and choose two representative 1-chains
Tex syntax error
and
Tex syntax error
for \theta. Let
Tex syntax error
be the straight line between north and south poles and let
Tex syntax error
be half of the equator. Now 2y = \partial w, where w \in C_2(\mathbb{RP}^3;\mathbb{Z}) is the 2-disk whose boundary is the equator. We see that \langle x,w \rangle = 1, so that
\displaystyle L_{\mathbb{RP}^3}(\theta,\theta) = L_{\mathbb{RP}^3}([x],[y]) = \langle x,y \rangle/2 = 1/2.

5 Example of lens spaces

Generalising the above example, the 3-dimensional lens space N_{p,q} has H_1(N_{p,q};\mathbb{Z}) \cong \mathbb{Z}_p. The linking form is given on a generator \theta \in H_1(N_{p,q};\mathbb{Z}) by L_{N_{p,q}}(\theta,\theta) = p/q. Note that L_{2,1} \cong \mathbb{RP}^3, so this is consistent with the above example.


6 Presentations of linking forms

A presentation for a middle dimensional linking form on N^{2\ell +1}

\displaystyle L_N \colon TH_{\ell}(N;\mathbb{Z}) \times TH_{\ell}(N;\mathbb{Z}) \to \mathbb{Q}/\mathbb{Z}

is an exact sequence:

\displaystyle 0 \to F \xrightarrow{\Phi} F^* \to TH_{\ell}(N;\mathbb{Z}) \xrightarrow{\partial} 0,

where F is a free abelain group and the linking L_N(x,y) can be computed as follows. Let x',y' \in F^* be such that \partial(x')=x and \partial(y')=y. Then we can tensor with \mathbb{Q} to obtain an isomorphism

\displaystyle \Phi \otimes \mathop{\mathrm{Id}} \colon F \otimes_{\mathbb{Z}} \mathbb{Q} \xrightarrow{\cong} F^* \otimes_{\mathbb{Z}} \mathbb{Q}.

The linking form is given by:

\displaystyle L_N(x,y) = (x' \otimes 1)((\Phi\otimes  \mathop{\mathrm{Id}})^{-1}(y'\otimes 1)).


Let \ell = 1, so 2\ell + 1 = 3. Every 3-manifold N is the boundary of a simply connected 4-manifold, which is obtained by glueing 2-handles to an integrally framed link in S^3 [Lickorish1962], [Wallace1960]. This is sometimes called a surgery presentation for N. Suppose that N is a rational homology 3-sphere. The matrix A of (self-) linking numbers of the link determines a presentation of the linking form of N. Taking the number of link components in the surgery presentation for N as the rank of F, the linking matrix A determines a map \Phi as above. The intersection form on a simply connected 4-manifold W whose boundary is N presents the linking form of N. This follows from the long exact sequence of the pair~(W,N) and Poincar\'{e} duality. See [Boyer1986] for more details and the use of such presentations for the classification of simply connected 4-manifolds with a given boundary.

7 Classification of 5-manifolds

Linking forms are central to the classification of simply connected 5-manifolds. See this 5-manifolds page, which also describes the classification of anti-symmetric linking forms.

8 References

\to \mathbb{Z} \to \mathbb{Q} \to \mathbb{Q}/\mathbb{Z} \to 0$$ is the Bockstein long exact sequence in cohomology. $$H^{n-\ell-1}(N;\mathbb{Q}) \to H^{n-\ell-1}(N;\mathbb{Q}/\mathbb{Z}) \xrightarrow{\beta} H^{n-\ell}(N;\mathbb{Z}) \to H^{n-\ell-1}(N;\mathbb{Q}).$$ Choose $z \in TH^{n-\ell-1}(N;\mathbb{Q}/\mathbb{Z})$ such that $\beta(z) = PD(x)$. This is always possible since torsion elements in $H^{n-\ell}(N;\mathbb{Z})$ map to zero in $H^{n-\ell}(N;\mathbb{Q})$. There is a cup product: $$\cup \colon H^{n-\ell-1}(N;\mathbb{Q}/\mathbb{Z}) \otimes H^{\ell+1}(N;\mathbb{Z}) \to H^{n}(N;\mathbb{Q}/\mathbb{Z}).$$ Compute $a:= z \cup PD(y)$. Then the Kronecker pairing: $$\langle a,[N] \rangle \in \mathbb{Q}/\mathbb{Z}$$ yields $L_N(x,y)$. ==Example of 3-dimensional projective space== ; As an example, let $N = \mathbb{RP}^3$, so that $\ell=1$ and $n=3$. Now $H_1(\mathbb{RP}^3;\mathbb{Z}) \cong \mathbb{Z}_2$. Let $\theta \in H_1(\mathbb{RP}^3;\mathbb{Z})$ be the non-trivial element. To compute the linking $L_{\mathbb{RP}^3}(\theta,\theta)$, consider $\mathbb{RP}^3$ modelled as $D^3/\sim$, with antipodal points on $\partial D^2$ identified, and choose two representative N^{n} has a bilinear intersection form defined on its homology. Given a {k}--chain p \in C_{k}(N;\mathbb{Z}) and an (n-k)--chain q \in C_{n-k}(N;\mathbb{Z}) which is transverse to q, the signed count of the intersections between p and q gives an intersection number \langle\, p \, , \, q\, \rangle \in \mathbb{Z}.


The intersection form is defined by

\displaystyle I_N \colon H_k(N;\mathbb{Z}) \times H_{n-k}(N;\mathbb{Z}) \to  \mathbb{Z}; ([p],[q]) \mapsto  \langle p, q \rangle

and is such that

\displaystyle I_N(x,y) = (-)^{k(n-k)}I_N(y,x).

2 Definition of the linking form

By bilinearity, the intersection form vanishes on the torsion part of the homology. The torsion part of an abelian group P is the subgroup
\displaystyle TP:= \{p \in P \,|\, ap=0 \text{ for some } a \in \mathbb{Z}\}.

The analogue of the intersection pairing for the torsion part of the homology of a closed oriented manifold N^n is the bilinear \mathbb{Q}/\mathbb{Z}--valued linking form, which is due to Seifert [Seifert1933]:

\displaystyle L_N \colon TH_{\ell}(N;\mathbb{Z}) \times TH_{n-\ell-1}(N;\mathbb{Z}) \to \mathbb{Q}/\mathbb{Z}

such that

\displaystyle L_N(x,y) = (-)^{\ell(n-\ell-1)}L_N(y,x)

and computed as follows. Given [x] \in TH_\ell(N;\mathbb{Z}) and [y] \in TH_{n-\ell-1}(N;\mathbb{Z}) represented by cycles x \in C_\ell(N;\mathbb{Z}) and y \in C_{n-\ell-1}(N,\mathbb{Z}), let w \in C_{\ell+1}(N;\mathbb{Z}) be such that \partial w = sy, for some s \in \mathbb{Z}. Then we define:

\displaystyle L_N([x],[y]) := \langle x, w \rangle/s \in \mathbb{Q}/\mathbb{Z}.

The resulting element is independent of the choices of x,y,w and s.

3 Definition via homology

Let x \in TH_{\ell}(N;\mathbb{Z}) and let y \in TH_{n-\ell-1}(N;\mathbb{Z}). Note that we have Poincaré duality isomorphisms

\displaystyle PD \colon TH_{\ell}(N;\mathbb{Z}) \xrightarrow{\cong} TH^{n-\ell}(N;\mathbb{Z})

and

\displaystyle PD \colon TH_{n-\ell-1}(N;\mathbb{Z}) \xrightarrow{\cong} TH^{\ell+1}(N;\mathbb{Z}).

Associated to the short exact sequence of coefficients

\displaystyle 0 \to \mathbb{Z} \to \mathbb{Q} \to \mathbb{Q}/\mathbb{Z} \to 0

is the Bockstein long exact sequence in cohomology.

\displaystyle H^{n-\ell-1}(N;\mathbb{Q}) \to H^{n-\ell-1}(N;\mathbb{Q}/\mathbb{Z}) \xrightarrow{\beta} H^{n-\ell}(N;\mathbb{Z}) \to H^{n-\ell-1}(N;\mathbb{Q}).

Choose z \in TH^{n-\ell-1}(N;\mathbb{Q}/\mathbb{Z}) such that \beta(z) = PD(x). This is always possible since torsion elements in H^{n-\ell}(N;\mathbb{Z}) map to zero in H^{n-\ell}(N;\mathbb{Q}). There is a cup product:

\displaystyle \cup \colon  H^{n-\ell-1}(N;\mathbb{Q}/\mathbb{Z}) \otimes H^{\ell+1}(N;\mathbb{Z}) \to  H^{n}(N;\mathbb{Q}/\mathbb{Z}).

Compute a:= z \cup  PD(y). Then the Kronecker pairing:

\displaystyle \langle a,[N] \rangle \in \mathbb{Q}/\mathbb{Z}

yields L_N(x,y).

4 Example of 3-dimensional projective space

As an example, let N = \mathbb{RP}^3, so that \ell=1 and n=3. Now H_1(\mathbb{RP}^3;\mathbb{Z}) \cong \mathbb{Z}_2. Let \theta \in H_1(\mathbb{RP}^3;\mathbb{Z}) be the non-trivial element. To compute the linking L_{\mathbb{RP}^3}(\theta,\theta), consider \mathbb{RP}^3 modelled as D^3/\sim, with antipodal points on \partial D^2 identified, and choose two representative 1-chains
Tex syntax error
and
Tex syntax error
for \theta. Let
Tex syntax error
be the straight line between north and south poles and let
Tex syntax error
be half of the equator. Now 2y = \partial w, where w \in C_2(\mathbb{RP}^3;\mathbb{Z}) is the 2-disk whose boundary is the equator. We see that \langle x,w \rangle = 1, so that
\displaystyle L_{\mathbb{RP}^3}(\theta,\theta) = L_{\mathbb{RP}^3}([x],[y]) = \langle x,y \rangle/2 = 1/2.

5 Example of lens spaces

Generalising the above example, the 3-dimensional lens space N_{p,q} has H_1(N_{p,q};\mathbb{Z}) \cong \mathbb{Z}_p. The linking form is given on a generator \theta \in H_1(N_{p,q};\mathbb{Z}) by L_{N_{p,q}}(\theta,\theta) = p/q. Note that L_{2,1} \cong \mathbb{RP}^3, so this is consistent with the above example.


6 Presentations of linking forms

A presentation for a middle dimensional linking form on N^{2\ell +1}

\displaystyle L_N \colon TH_{\ell}(N;\mathbb{Z}) \times TH_{\ell}(N;\mathbb{Z}) \to \mathbb{Q}/\mathbb{Z}

is an exact sequence:

\displaystyle 0 \to F \xrightarrow{\Phi} F^* \to TH_{\ell}(N;\mathbb{Z}) \xrightarrow{\partial} 0,

where F is a free abelain group and the linking L_N(x,y) can be computed as follows. Let x',y' \in F^* be such that \partial(x')=x and \partial(y')=y. Then we can tensor with \mathbb{Q} to obtain an isomorphism

\displaystyle \Phi \otimes \mathop{\mathrm{Id}} \colon F \otimes_{\mathbb{Z}} \mathbb{Q} \xrightarrow{\cong} F^* \otimes_{\mathbb{Z}} \mathbb{Q}.

The linking form is given by:

\displaystyle L_N(x,y) = (x' \otimes 1)((\Phi\otimes  \mathop{\mathrm{Id}})^{-1}(y'\otimes 1)).


Let \ell = 1, so 2\ell + 1 = 3. Every 3-manifold N is the boundary of a simply connected 4-manifold, which is obtained by glueing 2-handles to an integrally framed link in S^3 [Lickorish1962], [Wallace1960]. This is sometimes called a surgery presentation for N. Suppose that N is a rational homology 3-sphere. The matrix A of (self-) linking numbers of the link determines a presentation of the linking form of N. Taking the number of link components in the surgery presentation for N as the rank of F, the linking matrix A determines a map \Phi as above. The intersection form on a simply connected 4-manifold W whose boundary is N presents the linking form of N. This follows from the long exact sequence of the pair~(W,N) and Poincar\'{e} duality. See [Boyer1986] for more details and the use of such presentations for the classification of simply connected 4-manifolds with a given boundary.

7 Classification of 5-manifolds

Linking forms are central to the classification of simply connected 5-manifolds. See this 5-manifolds page, which also describes the classification of anti-symmetric linking forms.

8 References

$-chains $x$ and $y$ for $\theta$. Let $x$ be the straight line between north and south poles and let $y$ be half of the equator. Now y = \partial w$, where $w \in C_2(\mathbb{RP}^3;\mathbb{Z})$ is the 2-disk whose boundary is the equator. We see that $\langle x,w \rangle = 1$, so that $$L_{\mathbb{RP}^3}(\theta,\theta) = L_{\mathbb{RP}^3}([x],[y]) = \langle x,y \rangle/2 = 1/2.$$
==Example of lens spaces== ; Generalising the above example, the 3-dimensional lens space $N_{p,q}$ has $H_1(N_{p,q};\mathbb{Z}) \cong \mathbb{Z}_p$. The linking form is given on a generator $\theta \in H_1(N_{p,q};\mathbb{Z})$ by $L_{N_{p,q}}(\theta,\theta) = p/q$. Note that $L_{2,1} \cong \mathbb{RP}^3$, so this is consistent with the above example. ==Presentations of linking forms== ; A presentation for a middle dimensional linking form on $N^{2\ell +1}$ $$L_N \colon TH_{\ell}(N;\mathbb{Z}) \times TH_{\ell}(N;\mathbb{Z}) \to \mathbb{Q}/\mathbb{Z}$$ is an exact sequence: $ has a bilinear intersection form defined on its homology. Given a {k}--chain p \in C_{k}(N;\mathbb{Z}) and an (n-k)--chain q \in C_{n-k}(N;\mathbb{Z}) which is transverse to q, the signed count of the intersections between p and q gives an intersection number \langle\, p \, , \, q\, \rangle \in \mathbb{Z}.


The intersection form is defined by

\displaystyle I_N \colon H_k(N;\mathbb{Z}) \times H_{n-k}(N;\mathbb{Z}) \to  \mathbb{Z}; ([p],[q]) \mapsto  \langle p, q \rangle

and is such that

\displaystyle I_N(x,y) = (-)^{k(n-k)}I_N(y,x).

2 Definition of the linking form

By bilinearity, the intersection form vanishes on the torsion part of the homology. The torsion part of an abelian group P is the subgroup
\displaystyle TP:= \{p \in P \,|\, ap=0 \text{ for some } a \in \mathbb{Z}\}.

The analogue of the intersection pairing for the torsion part of the homology of a closed oriented manifold N^n is the bilinear \mathbb{Q}/\mathbb{Z}--valued linking form, which is due to Seifert [Seifert1933]:

\displaystyle L_N \colon TH_{\ell}(N;\mathbb{Z}) \times TH_{n-\ell-1}(N;\mathbb{Z}) \to \mathbb{Q}/\mathbb{Z}

such that

\displaystyle L_N(x,y) = (-)^{\ell(n-\ell-1)}L_N(y,x)

and computed as follows. Given [x] \in TH_\ell(N;\mathbb{Z}) and [y] \in TH_{n-\ell-1}(N;\mathbb{Z}) represented by cycles x \in C_\ell(N;\mathbb{Z}) and y \in C_{n-\ell-1}(N,\mathbb{Z}), let w \in C_{\ell+1}(N;\mathbb{Z}) be such that \partial w = sy, for some s \in \mathbb{Z}. Then we define:

\displaystyle L_N([x],[y]) := \langle x, w \rangle/s \in \mathbb{Q}/\mathbb{Z}.

The resulting element is independent of the choices of x,y,w and s.

3 Definition via homology

Let x \in TH_{\ell}(N;\mathbb{Z}) and let y \in TH_{n-\ell-1}(N;\mathbb{Z}). Note that we have Poincaré duality isomorphisms

\displaystyle PD \colon TH_{\ell}(N;\mathbb{Z}) \xrightarrow{\cong} TH^{n-\ell}(N;\mathbb{Z})

and

\displaystyle PD \colon TH_{n-\ell-1}(N;\mathbb{Z}) \xrightarrow{\cong} TH^{\ell+1}(N;\mathbb{Z}).

Associated to the short exact sequence of coefficients

\displaystyle 0 \to \mathbb{Z} \to \mathbb{Q} \to \mathbb{Q}/\mathbb{Z} \to 0

is the Bockstein long exact sequence in cohomology.

\displaystyle H^{n-\ell-1}(N;\mathbb{Q}) \to H^{n-\ell-1}(N;\mathbb{Q}/\mathbb{Z}) \xrightarrow{\beta} H^{n-\ell}(N;\mathbb{Z}) \to H^{n-\ell-1}(N;\mathbb{Q}).

Choose z \in TH^{n-\ell-1}(N;\mathbb{Q}/\mathbb{Z}) such that \beta(z) = PD(x). This is always possible since torsion elements in H^{n-\ell}(N;\mathbb{Z}) map to zero in H^{n-\ell}(N;\mathbb{Q}). There is a cup product:

\displaystyle \cup \colon  H^{n-\ell-1}(N;\mathbb{Q}/\mathbb{Z}) \otimes H^{\ell+1}(N;\mathbb{Z}) \to  H^{n}(N;\mathbb{Q}/\mathbb{Z}).

Compute a:= z \cup  PD(y). Then the Kronecker pairing:

\displaystyle \langle a,[N] \rangle \in \mathbb{Q}/\mathbb{Z}

yields L_N(x,y).

4 Example of 3-dimensional projective space

As an example, let N = \mathbb{RP}^3, so that \ell=1 and n=3. Now H_1(\mathbb{RP}^3;\mathbb{Z}) \cong \mathbb{Z}_2. Let \theta \in H_1(\mathbb{RP}^3;\mathbb{Z}) be the non-trivial element. To compute the linking L_{\mathbb{RP}^3}(\theta,\theta), consider \mathbb{RP}^3 modelled as D^3/\sim, with antipodal points on \partial D^2 identified, and choose two representative 1-chains
Tex syntax error
and
Tex syntax error
for \theta. Let
Tex syntax error
be the straight line between north and south poles and let
Tex syntax error
be half of the equator. Now 2y = \partial w, where w \in C_2(\mathbb{RP}^3;\mathbb{Z}) is the 2-disk whose boundary is the equator. We see that \langle x,w \rangle = 1, so that
\displaystyle L_{\mathbb{RP}^3}(\theta,\theta) = L_{\mathbb{RP}^3}([x],[y]) = \langle x,y \rangle/2 = 1/2.

5 Example of lens spaces

Generalising the above example, the 3-dimensional lens space N_{p,q} has H_1(N_{p,q};\mathbb{Z}) \cong \mathbb{Z}_p. The linking form is given on a generator \theta \in H_1(N_{p,q};\mathbb{Z}) by L_{N_{p,q}}(\theta,\theta) = p/q. Note that L_{2,1} \cong \mathbb{RP}^3, so this is consistent with the above example.


6 Presentations of linking forms

A presentation for a middle dimensional linking form on N^{2\ell +1}

\displaystyle L_N \colon TH_{\ell}(N;\mathbb{Z}) \times TH_{\ell}(N;\mathbb{Z}) \to \mathbb{Q}/\mathbb{Z}

is an exact sequence:

\displaystyle 0 \to F \xrightarrow{\Phi} F^* \to TH_{\ell}(N;\mathbb{Z}) \xrightarrow{\partial} 0,

where F is a free abelain group and the linking L_N(x,y) can be computed as follows. Let x',y' \in F^* be such that \partial(x')=x and \partial(y')=y. Then we can tensor with \mathbb{Q} to obtain an isomorphism

\displaystyle \Phi \otimes \mathop{\mathrm{Id}} \colon F \otimes_{\mathbb{Z}} \mathbb{Q} \xrightarrow{\cong} F^* \otimes_{\mathbb{Z}} \mathbb{Q}.

The linking form is given by:

\displaystyle L_N(x,y) = (x' \otimes 1)((\Phi\otimes  \mathop{\mathrm{Id}})^{-1}(y'\otimes 1)).


Let \ell = 1, so 2\ell + 1 = 3. Every 3-manifold N is the boundary of a simply connected 4-manifold, which is obtained by glueing 2-handles to an integrally framed link in S^3 [Lickorish1962], [Wallace1960]. This is sometimes called a surgery presentation for N. Suppose that N is a rational homology 3-sphere. The matrix A of (self-) linking numbers of the link determines a presentation of the linking form of N. Taking the number of link components in the surgery presentation for N as the rank of F, the linking matrix A determines a map \Phi as above. The intersection form on a simply connected 4-manifold W whose boundary is N presents the linking form of N. This follows from the long exact sequence of the pair~(W,N) and Poincar\'{e} duality. See [Boyer1986] for more details and the use of such presentations for the classification of simply connected 4-manifolds with a given boundary.

7 Classification of 5-manifolds

Linking forms are central to the classification of simply connected 5-manifolds. See this 5-manifolds page, which also describes the classification of anti-symmetric linking forms.

8 References

\to F \xrightarrow{\Phi} F^* \to TH_{\ell}(N;\mathbb{Z}) \xrightarrow{\partial} 0,$$ where $F$ is a free abelain group and the linking $L_N(x,y)$ can be computed as follows. Let $x',y' \in F^*$ be such that $\partial(x')=x$ and $\partial(y')=y$. Then we can tensor with $\mathbb{Q}$ to obtain an isomorphism $$\Phi \otimes \mathop{\mathrm{Id}} \colon F \otimes_{\mathbb{Z}} \mathbb{Q} \xrightarrow{\cong} F^* \otimes_{\mathbb{Z}} \mathbb{Q}.$$ The linking form is given by: $$L_N(x,y) = (x' \otimes 1)((\Phi\otimes \mathop{\mathrm{Id}})^{-1}(y'\otimes 1)).$$ Let $\ell = 1$, so \ell + 1 = 3$. Every 3-manifold $N$ is the boundary of a simply connected 4-manifold, which is obtained by glueing 2-handles to an integrally framed link in $S^3$ \cite{Lickorish1962}, \cite{Wallace1960}. This is sometimes called a surgery presentation for $N$. Suppose that $N$ is a rational homology 3-sphere. The matrix $A$ of (self-) linking numbers of the link determines a presentation of the linking form of $N$. Taking the number of link components in the surgery presentation for $N$ as the rank of $F$, the linking matrix $A$ determines a map $\Phi$ as above. The intersection form on a simply connected 4-manifold $W$ whose boundary is $N$ presents the linking form of $N$. This follows from the long exact sequence of the pair $W,N$ and Poincar\'{e} duality. See \cite{Boyer1986} for more details and the use of such presentations for the classification of simply connected 4-manifolds with a given boundary.
==Classification of 5-manifolds== Linking forms are central to the classification of simply connected 5-manifolds. See this [[5-manifolds: 1-connected|5-manifolds]] page, which also describes the classification of anti-symmetric linking forms. == References == {{#RefList:}} [[Category:Definitions]]N^{n} has a bilinear intersection form defined on its homology. Given a {k}--chain p \in C_{k}(N;\mathbb{Z}) and an (n-k)--chain q \in C_{n-k}(N;\mathbb{Z}) which is transverse to q, the signed count of the intersections between p and q gives an intersection number \langle\, p \, , \, q\, \rangle \in \mathbb{Z}.


The intersection form is defined by

\displaystyle I_N \colon H_k(N;\mathbb{Z}) \times H_{n-k}(N;\mathbb{Z}) \to  \mathbb{Z}; ([p],[q]) \mapsto  \langle p, q \rangle

and is such that

\displaystyle I_N(x,y) = (-)^{k(n-k)}I_N(y,x).

2 Definition of the linking form

By bilinearity, the intersection form vanishes on the torsion part of the homology. The torsion part of an abelian group P is the subgroup
\displaystyle TP:= \{p \in P \,|\, ap=0 \text{ for some } a \in \mathbb{Z}\}.

The analogue of the intersection pairing for the torsion part of the homology of a closed oriented manifold N^n is the bilinear \mathbb{Q}/\mathbb{Z}--valued linking form, which is due to Seifert [Seifert1933]:

\displaystyle L_N \colon TH_{\ell}(N;\mathbb{Z}) \times TH_{n-\ell-1}(N;\mathbb{Z}) \to \mathbb{Q}/\mathbb{Z}

such that

\displaystyle L_N(x,y) = (-)^{\ell(n-\ell-1)}L_N(y,x)

and computed as follows. Given [x] \in TH_\ell(N;\mathbb{Z}) and [y] \in TH_{n-\ell-1}(N;\mathbb{Z}) represented by cycles x \in C_\ell(N;\mathbb{Z}) and y \in C_{n-\ell-1}(N,\mathbb{Z}), let w \in C_{\ell+1}(N;\mathbb{Z}) be such that \partial w = sy, for some s \in \mathbb{Z}. Then we define:

\displaystyle L_N([x],[y]) := \langle x, w \rangle/s \in \mathbb{Q}/\mathbb{Z}.

The resulting element is independent of the choices of x,y,w and s.

3 Definition via homology

Let x \in TH_{\ell}(N;\mathbb{Z}) and let y \in TH_{n-\ell-1}(N;\mathbb{Z}). Note that we have Poincaré duality isomorphisms

\displaystyle PD \colon TH_{\ell}(N;\mathbb{Z}) \xrightarrow{\cong} TH^{n-\ell}(N;\mathbb{Z})

and

\displaystyle PD \colon TH_{n-\ell-1}(N;\mathbb{Z}) \xrightarrow{\cong} TH^{\ell+1}(N;\mathbb{Z}).

Associated to the short exact sequence of coefficients

\displaystyle 0 \to \mathbb{Z} \to \mathbb{Q} \to \mathbb{Q}/\mathbb{Z} \to 0

is the Bockstein long exact sequence in cohomology.

\displaystyle H^{n-\ell-1}(N;\mathbb{Q}) \to H^{n-\ell-1}(N;\mathbb{Q}/\mathbb{Z}) \xrightarrow{\beta} H^{n-\ell}(N;\mathbb{Z}) \to H^{n-\ell-1}(N;\mathbb{Q}).

Choose z \in TH^{n-\ell-1}(N;\mathbb{Q}/\mathbb{Z}) such that \beta(z) = PD(x). This is always possible since torsion elements in H^{n-\ell}(N;\mathbb{Z}) map to zero in H^{n-\ell}(N;\mathbb{Q}). There is a cup product:

\displaystyle \cup \colon  H^{n-\ell-1}(N;\mathbb{Q}/\mathbb{Z}) \otimes H^{\ell+1}(N;\mathbb{Z}) \to  H^{n}(N;\mathbb{Q}/\mathbb{Z}).

Compute a:= z \cup  PD(y). Then the Kronecker pairing:

\displaystyle \langle a,[N] \rangle \in \mathbb{Q}/\mathbb{Z}

yields L_N(x,y).

4 Example of 3-dimensional projective space

As an example, let N = \mathbb{RP}^3, so that \ell=1 and n=3. Now H_1(\mathbb{RP}^3;\mathbb{Z}) \cong \mathbb{Z}_2. Let \theta \in H_1(\mathbb{RP}^3;\mathbb{Z}) be the non-trivial element. To compute the linking L_{\mathbb{RP}^3}(\theta,\theta), consider \mathbb{RP}^3 modelled as D^3/\sim, with antipodal points on \partial D^2 identified, and choose two representative 1-chains
Tex syntax error
and
Tex syntax error
for \theta. Let
Tex syntax error
be the straight line between north and south poles and let
Tex syntax error
be half of the equator. Now 2y = \partial w, where w \in C_2(\mathbb{RP}^3;\mathbb{Z}) is the 2-disk whose boundary is the equator. We see that \langle x,w \rangle = 1, so that
\displaystyle L_{\mathbb{RP}^3}(\theta,\theta) = L_{\mathbb{RP}^3}([x],[y]) = \langle x,y \rangle/2 = 1/2.

5 Example of lens spaces

Generalising the above example, the 3-dimensional lens space N_{p,q} has H_1(N_{p,q};\mathbb{Z}) \cong \mathbb{Z}_p. The linking form is given on a generator \theta \in H_1(N_{p,q};\mathbb{Z}) by L_{N_{p,q}}(\theta,\theta) = p/q. Note that L_{2,1} \cong \mathbb{RP}^3, so this is consistent with the above example.


6 Presentations of linking forms

A presentation for a middle dimensional linking form on N^{2\ell +1}

\displaystyle L_N \colon TH_{\ell}(N;\mathbb{Z}) \times TH_{\ell}(N;\mathbb{Z}) \to \mathbb{Q}/\mathbb{Z}

is an exact sequence:

\displaystyle 0 \to F \xrightarrow{\Phi} F^* \to TH_{\ell}(N;\mathbb{Z}) \xrightarrow{\partial} 0,

where F is a free abelain group and the linking L_N(x,y) can be computed as follows. Let x',y' \in F^* be such that \partial(x')=x and \partial(y')=y. Then we can tensor with \mathbb{Q} to obtain an isomorphism

\displaystyle \Phi \otimes \mathop{\mathrm{Id}} \colon F \otimes_{\mathbb{Z}} \mathbb{Q} \xrightarrow{\cong} F^* \otimes_{\mathbb{Z}} \mathbb{Q}.

The linking form is given by:

\displaystyle L_N(x,y) = (x' \otimes 1)((\Phi\otimes  \mathop{\mathrm{Id}})^{-1}(y'\otimes 1)).


Let \ell = 1, so 2\ell + 1 = 3. Every 3-manifold N is the boundary of a simply connected 4-manifold, which is obtained by glueing 2-handles to an integrally framed link in S^3 [Lickorish1962], [Wallace1960]. This is sometimes called a surgery presentation for N. Suppose that N is a rational homology 3-sphere. The matrix A of (self-) linking numbers of the link determines a presentation of the linking form of N. Taking the number of link components in the surgery presentation for N as the rank of F, the linking matrix A determines a map \Phi as above. The intersection form on a simply connected 4-manifold W whose boundary is N presents the linking form of N. This follows from the long exact sequence of the pair~(W,N) and Poincar\'{e} duality. See [Boyer1986] for more details and the use of such presentations for the classification of simply connected 4-manifolds with a given boundary.

7 Classification of 5-manifolds

Linking forms are central to the classification of simply connected 5-manifolds. See this 5-manifolds page, which also describes the classification of anti-symmetric linking forms.

8 References

Personal tools
Namespaces
Variants
Actions
Navigation
Interaction
Toolbox