Linking form

(Difference between revisions)
Jump to: navigation, search
Line 24: Line 24:
$$L_N([x],[y]) := \langle x, w \rangle/s \in \mathbb{Q}/\mathbb{Z}.$$
$$L_N([x],[y]) := \langle x, w \rangle/s \in \mathbb{Q}/\mathbb{Z}.$$
The resulting element is independent of the choices of $x,y,w$ and $s$.
The resulting element is independent of the choices of $x,y,w$ and $s$.
+
+
==Definition via homology==
+
+
Let $x \in TH_{\ell}(N;\mathbb{Z})$ and let $y \in TH_{n-\ell-1}(N;\mathbb{Z})$. Note that we have Poincar\'{e} duality isomorphisms
+
$$PD \colon TH_{\ell}(N;\mathbb{Z}) \xrightarrow{\cong} TH^{n-\ell}(N;\mathbb{Z})$$
+
and
+
$$PD \colon TH_{n-\ell-1}(N;\mathbb{Z}) \xrightarrow{\cong} TH^{\ell+1}(N;\mathbb{Z}).$$
+
Associated to the short exact sequence of coefficients
+
$$0 \to \mathbb{Z} \to \mathbb{Q} \to \mathbb{Q}/\mathbb{Z} \to 0$$
+
is the Bockstein long exact sequence in cohomology.
+
$$H^{n-\ell-1}(N;\mathbb{Q}) \to H^{n-\ell-1}(N;\mathbb{Q}/\mathbb{Z}) \xrightarrow{\beta} H^{n-\ell}(N;\mathbb{Z}) \to H^{n-\ell-1}(N;\mathbb{Q}).$$
+
Choose $z \in TH^{n-\ell-1}(N;\mathbb{Q}/\mathbb{Z})$ such that $\beta(z) = PD(x)$. This is always possible since torsion elements in $H^{n-\ell}(N;\mathbb{Z})$ map to zero in $H^{n-\ell}(N;\mathbb{Q})$. There is a cup product:
+
$$\cup \colon H^{n-\ell-1}(N;\mathbb{Q}/\mathbb{Z}) \otimes H^{\ell+1}(N;\mathbb{Z}) \to H^{n}(N;\mathbb{Q}/\mathbb{Z}).$$
+
Compute $a:= z \cup PD(y)$. Then the Kronecker pairing:
+
$$\langle a,[N] \rangle \in \mathbb{Q}/\mathbb{Z}$$
+
yields $L_N(x,y)$.
==Example of 3-dimensional projective space==
==Example of 3-dimensional projective space==
Line 29: Line 45:
As an example, let $N = \mathbb{RP}^3$, so that $\ell=1$ and $n=3$. Now $H_1(\mathbb{RP}^3;\mathbb{Z}) \cong \mathbb{Z}_2$. Let $\theta \in H_1(\mathbb{RP}^3;\mathbb{Z})$ be the non-trivial element. To compute the linking $L_{\mathbb{RP}^3}(\theta,\theta)$, consider $\mathbb{RP}^3$ modelled as $D^3/\sim$, with antipodal points on $\partial D^2$ identified, and choose two representative $1$-chains $x$ and $y$ for $\theta$. Let $x$ be the straight line between north and south poles and let $y$ be half of the equator. Now $2y = \partial w$, where $w \in C_2(\mathbb{RP}^3;\mathbb{Z})$ is the 2-disk whose boundary is the equator. We see that $\langle x,w \rangle = 1$, so that
As an example, let $N = \mathbb{RP}^3$, so that $\ell=1$ and $n=3$. Now $H_1(\mathbb{RP}^3;\mathbb{Z}) \cong \mathbb{Z}_2$. Let $\theta \in H_1(\mathbb{RP}^3;\mathbb{Z})$ be the non-trivial element. To compute the linking $L_{\mathbb{RP}^3}(\theta,\theta)$, consider $\mathbb{RP}^3$ modelled as $D^3/\sim$, with antipodal points on $\partial D^2$ identified, and choose two representative $1$-chains $x$ and $y$ for $\theta$. Let $x$ be the straight line between north and south poles and let $y$ be half of the equator. Now $2y = \partial w$, where $w \in C_2(\mathbb{RP}^3;\mathbb{Z})$ is the 2-disk whose boundary is the equator. We see that $\langle x,w \rangle = 1$, so that
$$L_{\mathbb{RP}^3}(\theta,\theta) = L_{\mathbb{RP}^3}([x],[y]) = \langle x,y \rangle/2 = 1/2.$$
$$L_{\mathbb{RP}^3}(\theta,\theta) = L_{\mathbb{RP}^3}([x],[y]) = \langle x,y \rangle/2 = 1/2.$$
+
+

Revision as of 20:34, 27 March 2013

This page has not been refereed. The information given here might be incomplete or provisional.


1 Background: intersection forms

After Poincaré and Lefschetz, a closed oriented manifold N^{n} has a bilinear intersection form defined on its homology. Given a {k}--chain p \in C_{k}(N;\mathbb{Z}) and an (n-k)--chain q \in C_{n-k}(N;\mathbb{Z}) which is transverse to q, the signed count of the intersections between p and q gives an intersection number \langle\, p \, , \, q\, \rangle \in \mathbb{Z}.


The intersection form is defined by

\displaystyle I_N \colon H_k(N;\mathbb{Z}) \times H_{n-k}(N;\mathbb{Z}) \to  \mathbb{Z}; ([p],[q]) \mapsto  \langle p, q \rangle

and is such that

\displaystyle I_N(x,y) = (-)^{k(n-k)}I_N(y,x).

2 Definition of the linking form

By bilinearity, the intersection form vanishes on the torsion part of the homology. The torsion part of an abelian group P is the set
\displaystyle TP:= \{p \in P \,|\, ap=0 \text{ for some } a \in \mathbb{Z}\}.

The analogue of the intersection pairing for the torsion part of the homology of a closed oriented manifold N^n is the bilinear \mathbb{Q}/\mathbb{Z}--valued linking form, which is due to Seifert:

\displaystyle L_N \colon TH_{\ell}(N;\mathbb{Z}) \times TH_{n-\ell-1}(N;\mathbb{Z}) \to \mathbb{Q}/\mathbb{Z}

such that

\displaystyle L_N(x,y) = (-)^{\ell(n-\ell-1)}L_N(y,x)

and computed as follows. Given [x] \in TH_\ell(N;\mathbb{Z}) and [y] \in TH_{n-\ell-1}(N;\mathbb{Z}) represented by cycles x \in C_\ell(N;\mathbb{Z}) and y \in C_{n-\ell-1}(N,\mathbb{Z}), let w \in C_{\ell+1}(N;\mathbb{Z}) be such that \partial w = sy, for some s \in \mathbb{Z}. Then we define:

\displaystyle L_N([x],[y]) := \langle x, w \rangle/s \in \mathbb{Q}/\mathbb{Z}.

The resulting element is independent of the choices of x,y,w and s.

3 Definition via homology

Let x \in TH_{\ell}(N;\mathbb{Z}) and let y \in TH_{n-\ell-1}(N;\mathbb{Z}). Note that we have Poincar\'{e} duality isomorphisms

\displaystyle PD \colon TH_{\ell}(N;\mathbb{Z}) \xrightarrow{\cong} TH^{n-\ell}(N;\mathbb{Z})

and

\displaystyle PD \colon TH_{n-\ell-1}(N;\mathbb{Z}) \xrightarrow{\cong} TH^{\ell+1}(N;\mathbb{Z}).

Associated to the short exact sequence of coefficients

\displaystyle 0 \to \mathbb{Z} \to \mathbb{Q} \to \mathbb{Q}/\mathbb{Z} \to 0

is the Bockstein long exact sequence in cohomology.

\displaystyle H^{n-\ell-1}(N;\mathbb{Q}) \to H^{n-\ell-1}(N;\mathbb{Q}/\mathbb{Z}) \xrightarrow{\beta} H^{n-\ell}(N;\mathbb{Z}) \to H^{n-\ell-1}(N;\mathbb{Q}).

Choose z \in TH^{n-\ell-1}(N;\mathbb{Q}/\mathbb{Z}) such that \beta(z) = PD(x). This is always possible since torsion elements in H^{n-\ell}(N;\mathbb{Z}) map to zero in H^{n-\ell}(N;\mathbb{Q}). There is a cup product:

\displaystyle \cup \colon  H^{n-\ell-1}(N;\mathbb{Q}/\mathbb{Z}) \otimes H^{\ell+1}(N;\mathbb{Z}) \to  H^{n}(N;\mathbb{Q}/\mathbb{Z}).

Compute a:= z \cup  PD(y). Then the Kronecker pairing:

\displaystyle \langle a,[N] \rangle \in \mathbb{Q}/\mathbb{Z}

yields L_N(x,y).

4 Example of 3-dimensional projective space

As an example, let N = \mathbb{RP}^3, so that \ell=1 and n=3. Now H_1(\mathbb{RP}^3;\mathbb{Z}) \cong \mathbb{Z}_2. Let \theta \in H_1(\mathbb{RP}^3;\mathbb{Z}) be the non-trivial element. To compute the linking L_{\mathbb{RP}^3}(\theta,\theta), consider \mathbb{RP}^3 modelled as D^3/\sim, with antipodal points on \partial D^2 identified, and choose two representative 1-chains x and y for \theta. Let x be the straight line between north and south poles and let y be half of the equator. Now 2y = \partial w, where w \in C_2(\mathbb{RP}^3;\mathbb{Z}) is the 2-disk whose boundary is the equator. We see that \langle x,w \rangle = 1, so that

\displaystyle L_{\mathbb{RP}^3}(\theta,\theta) = L_{\mathbb{RP}^3}([x],[y]) = \langle x,y \rangle/2 = 1/2.




5 References

$-chains $x$ and $y$ for $\theta$. Let $x$ be the straight line between north and south poles and let $y$ be half of the equator. Now y = \partial w$, where $w \in C_2(\mathbb{RP}^3;\mathbb{Z})$ is the 2-disk whose boundary is the equator. We see that $\langle x,w \rangle = 1$, so that $$L_{\mathbb{RP}^3}(\theta,\theta) = L_{\mathbb{RP}^3}([x],[y]) = \langle x,y \rangle/2 = 1/2.$$ == References == {{#RefList:}} [[Category:Theory]] [[Category:Definitions]]N^{n} has a bilinear intersection form defined on its homology. Given a {k}--chain p \in C_{k}(N;\mathbb{Z}) and an (n-k)--chain q \in C_{n-k}(N;\mathbb{Z}) which is transverse to q, the signed count of the intersections between p and q gives an intersection number \langle\, p \, , \, q\, \rangle \in \mathbb{Z}.


The intersection form is defined by

\displaystyle I_N \colon H_k(N;\mathbb{Z}) \times H_{n-k}(N;\mathbb{Z}) \to  \mathbb{Z}; ([p],[q]) \mapsto  \langle p, q \rangle

and is such that

\displaystyle I_N(x,y) = (-)^{k(n-k)}I_N(y,x).

2 Definition of the linking form

By bilinearity, the intersection form vanishes on the torsion part of the homology. The torsion part of an abelian group P is the set
\displaystyle TP:= \{p \in P \,|\, ap=0 \text{ for some } a \in \mathbb{Z}\}.

The analogue of the intersection pairing for the torsion part of the homology of a closed oriented manifold N^n is the bilinear \mathbb{Q}/\mathbb{Z}--valued linking form, which is due to Seifert:

\displaystyle L_N \colon TH_{\ell}(N;\mathbb{Z}) \times TH_{n-\ell-1}(N;\mathbb{Z}) \to \mathbb{Q}/\mathbb{Z}

such that

\displaystyle L_N(x,y) = (-)^{\ell(n-\ell-1)}L_N(y,x)

and computed as follows. Given [x] \in TH_\ell(N;\mathbb{Z}) and [y] \in TH_{n-\ell-1}(N;\mathbb{Z}) represented by cycles x \in C_\ell(N;\mathbb{Z}) and y \in C_{n-\ell-1}(N,\mathbb{Z}), let w \in C_{\ell+1}(N;\mathbb{Z}) be such that \partial w = sy, for some s \in \mathbb{Z}. Then we define:

\displaystyle L_N([x],[y]) := \langle x, w \rangle/s \in \mathbb{Q}/\mathbb{Z}.

The resulting element is independent of the choices of x,y,w and s.

3 Definition via homology

Let x \in TH_{\ell}(N;\mathbb{Z}) and let y \in TH_{n-\ell-1}(N;\mathbb{Z}). Note that we have Poincar\'{e} duality isomorphisms

\displaystyle PD \colon TH_{\ell}(N;\mathbb{Z}) \xrightarrow{\cong} TH^{n-\ell}(N;\mathbb{Z})

and

\displaystyle PD \colon TH_{n-\ell-1}(N;\mathbb{Z}) \xrightarrow{\cong} TH^{\ell+1}(N;\mathbb{Z}).

Associated to the short exact sequence of coefficients

\displaystyle 0 \to \mathbb{Z} \to \mathbb{Q} \to \mathbb{Q}/\mathbb{Z} \to 0

is the Bockstein long exact sequence in cohomology.

\displaystyle H^{n-\ell-1}(N;\mathbb{Q}) \to H^{n-\ell-1}(N;\mathbb{Q}/\mathbb{Z}) \xrightarrow{\beta} H^{n-\ell}(N;\mathbb{Z}) \to H^{n-\ell-1}(N;\mathbb{Q}).

Choose z \in TH^{n-\ell-1}(N;\mathbb{Q}/\mathbb{Z}) such that \beta(z) = PD(x). This is always possible since torsion elements in H^{n-\ell}(N;\mathbb{Z}) map to zero in H^{n-\ell}(N;\mathbb{Q}). There is a cup product:

\displaystyle \cup \colon  H^{n-\ell-1}(N;\mathbb{Q}/\mathbb{Z}) \otimes H^{\ell+1}(N;\mathbb{Z}) \to  H^{n}(N;\mathbb{Q}/\mathbb{Z}).

Compute a:= z \cup  PD(y). Then the Kronecker pairing:

\displaystyle \langle a,[N] \rangle \in \mathbb{Q}/\mathbb{Z}

yields L_N(x,y).

4 Example of 3-dimensional projective space

As an example, let N = \mathbb{RP}^3, so that \ell=1 and n=3. Now H_1(\mathbb{RP}^3;\mathbb{Z}) \cong \mathbb{Z}_2. Let \theta \in H_1(\mathbb{RP}^3;\mathbb{Z}) be the non-trivial element. To compute the linking L_{\mathbb{RP}^3}(\theta,\theta), consider \mathbb{RP}^3 modelled as D^3/\sim, with antipodal points on \partial D^2 identified, and choose two representative 1-chains x and y for \theta. Let x be the straight line between north and south poles and let y be half of the equator. Now 2y = \partial w, where w \in C_2(\mathbb{RP}^3;\mathbb{Z}) is the 2-disk whose boundary is the equator. We see that \langle x,w \rangle = 1, so that

\displaystyle L_{\mathbb{RP}^3}(\theta,\theta) = L_{\mathbb{RP}^3}([x],[y]) = \langle x,y \rangle/2 = 1/2.




5 References

Personal tools
Namespaces
Variants
Actions
Navigation
Interaction
Toolbox