Linking form

(Difference between revisions)
Jump to: navigation, search
(Introduction to linking forms)
Line 15: Line 15:
== Definition of the linking form==
== Definition of the linking form==
By bilinearity, the intersection form vanishes on the torsion part of the homology. The analogue of the intersection pairing for the torsion part of the homology of a closed oriented manifold $N^n$ is the bilinear $\mathbb{Q}/\mathbb{Z}$--valued linking form, which is due to Seifert:
+
By bilinearity, the intersection form vanishes on the torsion part of the homology. The torsion part of an abelian group $P$ is the set $$TP:= \{p \in P \,|\, ap=0 \text{ for some } a \in \mathbb{Z}\}.$$
+
+
The analogue of the intersection pairing for the torsion part of the homology of a closed oriented manifold $N^n$ is the bilinear $\mathbb{Q}/\mathbb{Z}$--valued linking form, which is due to Seifert:
$$L_N \colon TH_{\ell}(N;\mathbb{Z}) \times TH_{n-\ell-1}(N;\mathbb{Z}) \to \mathbb{Q}/\mathbb{Z}$$
$$L_N \colon TH_{\ell}(N;\mathbb{Z}) \times TH_{n-\ell-1}(N;\mathbb{Z}) \to \mathbb{Q}/\mathbb{Z}$$
such that
such that
$$L_N(x,y) = (-)^{\ell(n-\ell-1)}L_N(y,x).$$
+
$$L_N(x,y) = (-)^{\ell(n-\ell-1)}L_N(y,x)$$
+
and computed as follows. Given $[x] \in TH_\ell(N;\mathbb{Z})$ and $[y] \in TH_{n-\ell-1}(N;\mathbb{Z})$ represented by cycles $x \in C_\ell(N;\mathbb{Z})$ and $y \in C_{n-\ell-1}(N,\mathbb{Z})$, let $w \in C_{\ell+1}(N;\mathbb{Z})$ be such that $\partial w = sy$, for some $s \in \mathbb{Z}$. Then we define:
+
Given $[x] \in TH_\ell(N;\mathbb{Z})$ and $[y] \in TH_{n-\ell-1}(N;\mathbb{Z})$ represented by cycles $x \in C_\ell(N;\mathbb{Z})$ and $y \in C_{n-\ell-1}(N,\mathbb{Z})$, let $w \in C_{\ell+1}(N;\mathbb{Z})$ be such that $\partial w = sy$, for some $s \in \mathbb{Z}$. Then we define:
+
$$L_N([x],[y]) := \langle x, w \rangle/s \in \mathbb{Q}/\mathbb{Z}.$$
$$L_N([x],[y]) := \langle x, w \rangle/s \in \mathbb{Q}/\mathbb{Z}.$$
The resulting element is independent of the choices of $x,y,w$ and $s$.
The resulting element is independent of the choices of $x,y,w$ and $s$.

Revision as of 16:00, 27 March 2013

This page has not been refereed. The information given here might be incomplete or provisional.


1 Background: intersection forms

After Poincaré and Lefschetz, a closed oriented manifold N^{n} has a bilinear intersection form defined on its homology. Given a {k}--chain p \in C_{k}(N;\mathbb{Z}) and an (n-k)--chain q \in C_{n-k}(N;\mathbb{Z}) which is transverse to q, the signed count of the intersections between p and q gives an intersection number \langle\, p \, , \, q\, \rangle \in \mathbb{Z}.


The intersection form is defined by

\displaystyle I_N \colon H_k(N;\mathbb{Z}) \times H_{n-k}(N;\mathbb{Z}) \to  \mathbb{Z}; ([p],[q]) \mapsto  \langle p, q \rangle

and is such that

\displaystyle I_N(x,y) = (-)^{k(n-k)}I_N(y,x).

2 Definition of the linking form

By bilinearity, the intersection form vanishes on the torsion part of the homology. The torsion part of an abelian group P is the set
\displaystyle TP:= \{p \in P \,|\, ap=0 \text{ for some } a \in \mathbb{Z}\}.

The analogue of the intersection pairing for the torsion part of the homology of a closed oriented manifold N^n is the bilinear \mathbb{Q}/\mathbb{Z}--valued linking form, which is due to Seifert:

\displaystyle L_N \colon TH_{\ell}(N;\mathbb{Z}) \times TH_{n-\ell-1}(N;\mathbb{Z}) \to \mathbb{Q}/\mathbb{Z}

such that

\displaystyle L_N(x,y) = (-)^{\ell(n-\ell-1)}L_N(y,x)

and computed as follows. Given [x] \in TH_\ell(N;\mathbb{Z}) and [y] \in TH_{n-\ell-1}(N;\mathbb{Z}) represented by cycles x \in C_\ell(N;\mathbb{Z}) and y \in C_{n-\ell-1}(N,\mathbb{Z}), let w \in C_{\ell+1}(N;\mathbb{Z}) be such that \partial w = sy, for some s \in \mathbb{Z}. Then we define:

\displaystyle L_N([x],[y]) := \langle x, w \rangle/s \in \mathbb{Q}/\mathbb{Z}.

The resulting element is independent of the choices of x,y,w and s.

As an example, let N = \mathbb{RP}^3, so that \ell=1 and n=3. Now H_1(\mathbb{RP}^3;\mathbb{Z}) \cong \mathbb{Z}_2. Let \theta \in H_1(\mathbb{RP}^3;\mathbb{Z}) be the non--trivial element. To compute the linking L_{\mathbb{RP}^3}(\theta,\theta), consider \mathbb{RP}^3 modelled as D^3/\sim, with antipodal points on \partial D^2 identified, and choose two representative 1--chains x and y for \theta. Let x be the straight line between north and south poles and let y be half of the equator. Now 2y = \partial w, where w \in C_2(\mathbb{RP}^3;\mathbb{Z}) is the 2-disk whose boundary is the equator. We see that \langle x,w \rangle = 1, so that

\displaystyle L_{\mathbb{RP}^3}(\theta,\theta) = L_{\mathbb{RP}^3}([x],[y]) = \langle x,y \rangle/2 = 1/2.


3 References

$--chains $x$ and $y$ for $\theta$. Let $x$ be the straight line between north and south poles and let $y$ be half of the equator. Now y = \partial w$, where $w \in C_2(\mathbb{RP}^3;\mathbb{Z})$ is the 2-disk whose boundary is the equator. We see that $\langle x,w \rangle = 1$, so that $$L_{\mathbb{RP}^3}(\theta,\theta) = L_{\mathbb{RP}^3}([x],[y]) = \langle x,y \rangle/2 = 1/2.$$ == References == {{#RefList:}} [[Category:Theory]] [[Category:Definitions]]N^{n} has a bilinear intersection form defined on its homology. Given a {k}--chain p \in C_{k}(N;\mathbb{Z}) and an (n-k)--chain q \in C_{n-k}(N;\mathbb{Z}) which is transverse to q, the signed count of the intersections between p and q gives an intersection number \langle\, p \, , \, q\, \rangle \in \mathbb{Z}.


The intersection form is defined by

\displaystyle I_N \colon H_k(N;\mathbb{Z}) \times H_{n-k}(N;\mathbb{Z}) \to  \mathbb{Z}; ([p],[q]) \mapsto  \langle p, q \rangle

and is such that

\displaystyle I_N(x,y) = (-)^{k(n-k)}I_N(y,x).

2 Definition of the linking form

By bilinearity, the intersection form vanishes on the torsion part of the homology. The torsion part of an abelian group P is the set
\displaystyle TP:= \{p \in P \,|\, ap=0 \text{ for some } a \in \mathbb{Z}\}.

The analogue of the intersection pairing for the torsion part of the homology of a closed oriented manifold N^n is the bilinear \mathbb{Q}/\mathbb{Z}--valued linking form, which is due to Seifert:

\displaystyle L_N \colon TH_{\ell}(N;\mathbb{Z}) \times TH_{n-\ell-1}(N;\mathbb{Z}) \to \mathbb{Q}/\mathbb{Z}

such that

\displaystyle L_N(x,y) = (-)^{\ell(n-\ell-1)}L_N(y,x)

and computed as follows. Given [x] \in TH_\ell(N;\mathbb{Z}) and [y] \in TH_{n-\ell-1}(N;\mathbb{Z}) represented by cycles x \in C_\ell(N;\mathbb{Z}) and y \in C_{n-\ell-1}(N,\mathbb{Z}), let w \in C_{\ell+1}(N;\mathbb{Z}) be such that \partial w = sy, for some s \in \mathbb{Z}. Then we define:

\displaystyle L_N([x],[y]) := \langle x, w \rangle/s \in \mathbb{Q}/\mathbb{Z}.

The resulting element is independent of the choices of x,y,w and s.

As an example, let N = \mathbb{RP}^3, so that \ell=1 and n=3. Now H_1(\mathbb{RP}^3;\mathbb{Z}) \cong \mathbb{Z}_2. Let \theta \in H_1(\mathbb{RP}^3;\mathbb{Z}) be the non--trivial element. To compute the linking L_{\mathbb{RP}^3}(\theta,\theta), consider \mathbb{RP}^3 modelled as D^3/\sim, with antipodal points on \partial D^2 identified, and choose two representative 1--chains x and y for \theta. Let x be the straight line between north and south poles and let y be half of the equator. Now 2y = \partial w, where w \in C_2(\mathbb{RP}^3;\mathbb{Z}) is the 2-disk whose boundary is the equator. We see that \langle x,w \rangle = 1, so that

\displaystyle L_{\mathbb{RP}^3}(\theta,\theta) = L_{\mathbb{RP}^3}([x],[y]) = \langle x,y \rangle/2 = 1/2.


3 References

Personal tools
Namespaces
Variants
Actions
Navigation
Interaction
Toolbox