Bordism

From Manifold Atlas
Revision as of 12:02, 10 March 2010 by Taras Panov (Talk | contribs)
Jump to: navigation, search

An earlier version of this page was published in the Bulletin of the Manifold Atlas: screen, print.

You may view the version used for publication as of 09:46, 1 April 2011 and the changes since publication.

The user responsible for this page is Taras Panov. No other user may edit this page at present.

Contents

1 Introduction

The theory of bordism is is one of the most deep and influential parts of the algebraic topology, which experienced a spectacular development in the 1960s. The main introductory reference is the monograph [Stong1968].

Basic geometric constructions of bordisms and cobordisms, as well as homotopical definitions are summarised here. For the more specific information, see B-Bordism and pages on specific bordism theories, such as unoriented, oriented and complex.

2 The bordism relation

All manifolds here are assumed to be smooth, compact and closed (without boundary), unless otherwise specified. Given two n-dimensional manifolds M_1 and M_2, a bordism between them is an (n+1)-dimensional manifold W with boundary, whose boundary is the disjoint union of M_1 and M_2, that is, \partial W=M_1\sqcup M_2. If such W exists, M_1 and M_2 are called bordant. The bordism relation splits manifolds into equivalence classes (see Figure), which are called bordism classes.

Transitivity of the bordism relation


3 Unoriented bordism

We denote the bordism class of M by [M], and denote by \varOmega_n^O the set of bordism classes of n-dimensional manifolds. Then \varOmega_n^O is an abelian group with respect to the disjoint union operation: [M_1]+[M_2]=[M_1\sqcup M_2]. Zero is represented by the bordism class of an empty set (which is counted as a manifold in any dimension), or by the bordism class of any manifold which bounds. We also have -[M]=[M], so that \varOmega_n^O is a 2-torsion group.

Set \varOmega _*^O:=\bigoplus _{n \ge 0}\varOmega _n^O. The product of bordism classes, namely [M_1]\times [M_2]=[M_1 \times M_2], makes \varOmega_*^O a graded commutative ring known as the unoriented bordism ring.

For any (good) space X the bordism relation can be extended to maps of n-dimensional manifolds to X: two maps M_1\to X and M_2\to X are bordant if there is a bordism W between M_1 and M_2 and the map M_1\sqcup M_2\to X extends to a map W\to X. The set of bordism classes of maps M\to X forms an abelian group called the group of n-dimensional unoriented bordisms of X and denoted O_n(X) (other notations: N_n(X), MO_n(X)).

The assignment X\mapsto O_*(X) defines a generalised homology theory, that is, satisfies the homotopy invariance, has the excision property and exact sequences of pairs. For this theory we have O_*(pt)=\varOmega_*^O, and O_*(X) is an \varOmega_*^O-module.

The Pontrjagin--Thom construction reduces the calculation of the bordism groups to a homotopical problem:

\displaystyle    O_n(X)=\lim_{k\to\infty}\pi_{k+n}\bigl((X_+)\wedge MO(k)\bigr)

where X_+=X\sqcup pt, and MO(k) is the Thom space of the universal vector k-plane bundle EO(k)\to BO(k). The cobordism groups are defined dually:

\displaystyle    O^n(X)=\lim_{k\to\infty}[\Sigma^{k-n}(X_+),MO(k)]

where [X,Y] denotes the set of homotopy classes of maps from X to Y. The resulting generalised cohomology theory is multiplicative, which implies that O^*(X)=\oplus_n O^n(X) is a graded commutative ring. It follows from the definitions that O^n(pt)=O_{-n}(pt). The graded ring \varOmega^*_O with \varOmega^{-n}_O:=O^{-n}(pt)=\varOmega_n^O is called the unoriented cobordism ring. It has nonzero elements only in nonpositively graded components. The bordism ring \varOmega^O_* and the cobordism ring \varOmega_O^* differ only by their gradings, so the notions of the "bordism class" and "cobordism class" of a manifold M are interchangeable. The difference between bordism and cobordism appears only for nontrivial spaces X.


4 References

This page has not been refereed. The information given here might be incomplete or provisional.

[[File:File:Example.jpg]]

Personal tools
Namespaces
Variants
Actions
Navigation
Interaction
Toolbox