6-manifolds: 2-connected

(Difference between revisions)
Jump to: navigation, search
m
m (Introduction)
Line 4: Line 4:
Let $\mathcal{M}_6$ be the set of diffeomorphism classes of [[wikipedia:Closed_manifold|closed]] [[wikipedia:Differentiable_manifold|smooth]] [[wikipedia:Simply-connected|simply-connected]] 2-connected 6-manifolds $M$.
Let $\mathcal{M}_6$ be the set of diffeomorphism classes of [[wikipedia:Closed_manifold|closed]] [[wikipedia:Differentiable_manifold|smooth]] [[wikipedia:Simply-connected|simply-connected]] 2-connected 6-manifolds $M$.
The classification $\mathcal{M}_6$ was one of Smale's first applications of the [[Wikipedia:h-cobordism_theorem|h-cobordism]] theorem {{cite|Smale1962a|Corollary 1.3}}. The classification, as for [[Surface|oriented surfaces]] is strikingly simple: every 2-connected 6-manifold $M$ is diffeomorphic to a [[Wikipedia:Connected-sum|connected-sum]]
+
The classification $\mathcal{M}_6$ was one of Smale's first applications of the [[Wikipedia:h-cobordism_theorem|h-cobordism]] theorem {{cite|Smale1962a|Corollary 1.3}}. The is a precise 6-dimensional analogue of the classification of [[Surface|orientable surfaces]]: every 2-connected 6-manifold $M$ is diffeomorphic to a [[Wikipedia:Connected-sum|connected-sum]]
$$ M \cong \sharp_r(S^3 \times S^3)$$
$$ M \cong \sharp_r(S^3 \times S^3)$$
where by definition $\sharp_0(S^3 \times S^3) = S^6$ and in general $r$ is determined by the formula for the [[Wikipedia:Euler characteristic|Euler characteristic]] of $M$
where by definition $\sharp_0(S^3 \times S^3) = S^6$ and in general $r$ is determined by the formula for the [[Wikipedia:Euler characteristic|Euler characteristic]] of $M$

Revision as of 10:34, 27 November 2010

This page has not been refereed. The information given here might be incomplete or provisional.

Contents

1 Introduction

Let \mathcal{M}_6 be the set of diffeomorphism classes of closed smooth simply-connected 2-connected 6-manifolds M.

The classification \mathcal{M}_6 was one of Smale's first applications of the h-cobordism theorem [Smale1962a, Corollary 1.3]. The is a precise 6-dimensional analogue of the classification of orientable surfaces: every 2-connected 6-manifold M is diffeomorphic to a connected-sum

Tex syntax error
where by definition
Tex syntax error
and in general r is determined by the formula for the Euler characteristic of M
Tex syntax error

2 Construction and examples

The following gives a complete list of 2-connected 6-manifolds up to diffeomorphism:

  • Tex syntax error
    , the standard 6-sphere.
  • Tex syntax error
    , the
    Tex syntax error
    -fold connected sum of
    Tex syntax error
    .

3 Invariants

Suppose that M is diffeomorphic to
Tex syntax error
then:
  • Tex syntax error
    ,
  • the third Betti-number of M is given by
    Tex syntax error
    ,
  • the Euler characteristic of M is given by
    Tex syntax error
    ,
  • the intersection form of M is isomorphic to the sum of b-copies of
    Tex syntax error
    , the standard skew-symmetric hyperbolic form on \Zz^2.

4 Classification

Recall that the following theorem was stated in other words in the introduction:

Theorem 4.1 [Smale1962a, Corolary 1.3].

The semi-group of 2-connected 6-manifolds is generated by
Tex syntax error
.

Hence if \Nn denotes the natural numbers we obtain a bijection

\displaystyle  \mathcal{M}_6\equiv \Nn,~~~[M] \mapsto \frac{1}{2}b_3(M).

5 Further discussion

5.1 Topological 2-connected 6-manifolds

Let \mathcal{M}^{\Top}_6 be the set of homeomorphism classes of topological 2-connected 6-manifolds.

Theorem 5.1. Every topological 2-connected 6-manifold admits a smooth structure which is unique up to diffoemorphism. In particular, there is a bijection

\displaystyle  \mathcal{M}_6 \rightarrow \mathcal{M}^{\Top}_6.

Proof. For any such manifold M we have H^4(M; \Zz/2) \cong 0 and so M is smoothable (see 6-manifolds: 1-connected). Any two homeomorphic manifolds have the same Euler Characteristic and so by Theorem 4.1 are diffeomorphic.

\square

5.2 Mapping class groups

...


References

Personal tools
Namespaces
Variants
Actions
Navigation
Interaction
Toolbox