Talk:Chain duality I (Ex)

From Manifold Atlas
Jump to: navigation, search
(i) Suppose we have a contravariant functor
\displaystyle T_{\mathbb{A}}: \mathbb{A} \to \mathbb{B}(\mathbb{A}).
We would like to extend this to a contravariant functor
\displaystyle T_{\mathbb{B}}: \mathbb{B}(\mathbb{A}) \to \mathbb{B}(\mathbb{A}).
Let C be a chain complex in \mathbb{B}(\mathbb{A}), applying T_\mathbb{A} we get the double complex T_\mathbb{A}(C_{-*})_{*}:
\displaystyle \xymatrix{ & \vdots \ar[d] & \vdots \ar[d] & \vdots \ar[d] & \\ \ldots \ar[r] & T_\mathbb{A}(C_{i-1})_{j+1} \ar[d] \ar[r] & T_\mathbb{A}(C_{i-1})_{j} \ar[d]^{T_{\mathbb{A}}((d_C)_i)_j} \ar[r] & T_\mathbb{A}(C_{i-1})_{j-1} \ar[d] \ar[r] & \\ \ldots \ar[r] & T_\mathbb{A}(C_i)_{j+1} \ar[d] \ar[r]^{(d_{T_{\mathbb{A}}(C_i)})_{j+1}} & T_\mathbb{A}(C_i)_{j} \ar[d]^{T_{\mathbb{A}}((d_C)_{i+1})_j} \ar[r]^{(d_{T_{\mathbb{A}}(C_i)})_{j}} & T_\mathbb{A}(C_i)_{j-1} \ar[d] \ar[r] & \\ \ldots \ar[r] & T_\mathbb{A}(C_{i+1})_{j+1} \ar[d] \ar[r] & T_\mathbb{A}(C_{i+1})_{j} \ar[d] \ar[r] & T_\mathbb{A}(C_{i+1})_{j-1} \ar[d] \ar[r] & \\ & \vdots & \vdots & \vdots & }

This can be converted into a chain complex in the usual way:

\displaystyle  T_{\mathbb{B}}(C)_k := \sum_{-i+j=k}{T_\mathbb{A}(C_i)_j}
\displaystyle  (d_{T_{\mathbb{B}}(C)})_k := d_{T_{\mathbb{A}}(C_{i+1})} + (-1)^jT_{\mathbb{A}}((d_C)_j).

This defines what T_\mathbb{B} of an object is, so now we specify its behaviour on morphisms:

\displaystyle  T_\mathbb{B}(f:C\to D)_k := \sum_{-i+j=k}T_\mathbb{A}(f_i)_j

where f_i denotes the component of f from C_i \to D_i. The claim is that this defines a contravariant functor.

Since f:C\to D is a chain map we have
\displaystyle (d_D)_{i-1}f_i = f_{i-1}(d_C)_i,
so by the contravariance of the functor T_\mathbb{A} we observe that
\displaystyle T_\mathbb{A}(f_i)T_\mathbb{A}((d_D)_{i-1}) = {T_\mathbb{A}}((d_C)_{i}) T_\mathbb{A}(f_{i-1}).
Also, because T_\mathbb{A} sends morphisms to morphisms, T_\mathbb{A}(f_i) is a chain map, thus
\displaystyle d_{T_\mathbb{A}(C_i)}T_\mathbb{A}(f_i)_j = T_\mathbb{A}(f_i)_{j-1}d_{T_\mathbb{A}(D_i)}.
These formulae prove precisely that T_\mathbb{B}(f) is a chain map by the commutativity of the following diagram:
\displaystyle \xymatrix{ & T_\mathbb{A}(D_i)_j \ar[dd]^{T_\mathbb{A}(f_i)_j} \ar[dl]_{d_{T_\mathbb{A}(D_i)}} \ar[dr]^{(-1)^jT_\mathbb{A}(d_{D_j})} & \\ T_\mathbb{A}(D_i)_{j-1} \ar[dd]_{T_\mathbb{A}(f_i)_{j-1}} && T_\mathbb{A}(D_{i+1})_j \ar[dd]^{T_\mathbb{A}(f_{i+1})_j} \\ & T_\mathbb{A}(C_i)_j \ar[dl]^{d_{T_\mathbb{A}(C_i)}} \ar[dr]_{(-1)^jT_\mathbb{A}(d_{C_j})} & \\ T_\mathbb{A}(C_i)_{j-1} && T_\mathbb{A}(C_{i+1})_j \\ }

Thus T_\mathbb{A} sends objects to objects and morphisms to morphisms. Functoriality of T_\mathbb{B} follows from that of T_\mathbb{A}:

\displaystyle \begin{aligned}  T_\mathbb{B}(g\circ f: C \to D \to E)_k &= \sum_{-i+j=k}T_\mathbb{A}((g\circ f)_i)_j \\  &= \sum_{-i+j=k}T_\mathbb{A}(f_i)_jT_\mathbb{A}(g_i)_j \\  &= \sum_{-i+j=k}T_\mathbb{A}(f_i)_j\sum_{-i+j=k}T_\mathbb{A}(g_i)_j \\  &= (T_\mathbb{B}(f))_k \circ (T_\mathbb{B}(g))_k \\  &= (T_\mathbb{B}(f) \circ T_\mathbb{B}(g))_k. \end{aligned}
(ii) Now suppose that the chain complex C\in \mathbb{B}(\mathbb{A}) is concentrated between dimensions 0 and n and that T_\mathbb{A}: \mathbb{A} \to \mathbb{A}. Then looking at
\displaystyle  T_{\mathbb{B}}(C)_k := \sum_{-i+j=k}{T_\mathbb{A}(C_i)_j}
we observe that the only non-zero contributions occur when j=0 and when i is between 0 and n, in other words T_{\mathbb{B}}(C)_k is only non-zero for k between -n and 0 as required.
Personal tools
Namespaces
Variants
Actions
Navigation
Interaction
Toolbox