Talk:Smoothings of products (Ex)

From Manifold Atlas
(Difference between revisions)
Jump to: navigation, search
(Created page with "<wikitex>; Let $\alpha \colon X \to BO$ and $\beta \colon Y \to BO$ be the given smooth structures. Recall the definition of $$ \Psi_\alpha \colon Conc(X) \to [X, PL/O]. $$ ...")
m
Line 5: Line 5:
$$ \Psi_\alpha \colon Conc(X) \to [X, PL/O]. $$
$$ \Psi_\alpha \colon Conc(X) \to [X, PL/O]. $$
Given a smooth structure $\xi \colon X \to BO$, consider $\Delta_X^* (\xi \oplus- \alpha) \colon X \to BO$. In the diagram
Given a smooth structure $\xi \colon X \to BO$, consider $\Delta_X^* (\xi \oplus- \alpha) \colon X \to BO$. In the diagram
$$\xymatrix{
+
$$
 & PL/O\ar[d] \\
+
\xymatrix{
X\ar[r]_{\Delta_X^*(\xi \oplus -\alpha)}\ar[ur]^{\psi_\alpha(\xi)} & BO\ar[d] \\ 
+
& PL/O\ar[d] \\
& BPL } $$
+
X\ar[r]_{\Delta_X^*(\xi \oplus -\alpha)}\ar[ur]^{\psi_\alpha(\xi)} & BO\ar[d]\\
+
& BPL},$$
the lift $\psi_\alpha(\xi) $ (which is unique up to homotopy) results from the fact that the composition $X \xrightarrow{\Delta_X^*(\xi \oplus -\alpha)} BO \to BPL$ is nullhomotopic ($ \xi $ and $\alpha$ are lifts of the same PL structure). Then
the lift $\psi_\alpha(\xi) $ (which is unique up to homotopy) results from the fact that the composition $X \xrightarrow{\Delta_X^*(\xi \oplus -\alpha)} BO \to BPL$ is nullhomotopic ($ \xi $ and $\alpha$ are lifts of the same PL structure). Then
$$ \Psi_\alpha(\xi) = [\psi_\alpha(\xi)].$$
$$ \Psi_\alpha(\xi) = [\psi_\alpha(\xi)].$$

Latest revision as of 19:53, 29 August 2013

Let \alpha \colon X \to BO and \beta \colon Y \to BO be the given smooth structures.

Recall the definition of

\displaystyle  \Psi_\alpha \colon Conc(X) \to [X, PL/O].

Given a smooth structure \xi \colon X \to BO, consider \Delta_X^* (\xi \oplus- \alpha) \colon X \to BO. In the diagram

\displaystyle  \xymatrix{ & PL/O\ar[d] \\ X\ar[r]_{\Delta_X^*(\xi \oplus -\alpha)}\ar[ur]^{\psi_\alpha(\xi)} & BO\ar[d]\\ & BPL},

the lift \psi_\alpha(\xi) (which is unique up to homotopy) results from the fact that the composition X \xrightarrow{\Delta_X^*(\xi \oplus -\alpha)} BO \to BPL is nullhomotopic (\xi and \alpha are lifts of the same PL structure). Then

\displaystyle  \Psi_\alpha(\xi) = [\psi_\alpha(\xi)].

The PL homeomorphisms f \colon X \to M and g \colon Y \to N induce a smooth structure on X \times Y via the map

\displaystyle \mu f \oplus \nu g \colon X \times Y \xrightarrow{f \times g} M \times N \xrightarrow{\mu \times \nu} BO \times BO \xrightarrow{\oplus} BO,

where \mu and \nu classify the stable tangent bundle of M and N, respectively.

We now have

\displaystyle  \Delta_{X \times Y}^*(\mu f \oplus \nu g \oplus -(\alpha \oplus \beta)) \simeq (\Delta_X \times \Delta_Y)^*(\mu f \oplus -\alpha \oplus \nu g \oplus -\beta) \simeq \Delta_X^*( \mu f \oplus -\alpha) \oplus \Delta_Y^*(\nu g \oplus -\beta),

where we have used that \oplus is homotopy associative and homotopy commutative.

Since PL/O is the homotopy fibre of the infinite loop map BO \to BPL, a lift of this map is now given by \psi_\alpha(\mu f) \oplus \psi_\beta(\nu g) ( \oplus denoting now the induced H-space structure on PL/O).

Therefore, we get

\displaystyle  \Psi_{\alpha \times \beta}( f \times g) = \Psi_\alpha (f) \oplus \Psi_\beta(g)  = [ X \times Y \xrightarrow{\psi_\alpha (\mu f) \times \psi_\beta(\nu g)} PL/O \times PL/O \xrightarrow{\oplus} PL/O ].
Personal tools
Namespaces
Variants
Actions
Navigation
Interaction
Toolbox