Talk:Normal bordism - definitions (Ex)

(Difference between revisions)
Jump to: navigation, search
Line 17: Line 17:
\right\}
\right\}
$$
$$
+
where we identify $(\xi_0,M_0,i_0,f_0,\overline{f_0})\sim(\xi_1,M_1,i_1,f_1,\overline{f_1})$ iff
+
+
1) there exists $W$ compact manifold of dimension $n+1$ such that $\partial W=\partial_0W\amalg\partial_1W$
+
+
2) there exists an embedding $I$: $W\to\mathbb{R}^{n+k}\times[0,1]$ such that for $j=0,1$ we have
+
$I^{-1}(\mathbb{R}^{n+k}\times\{j\})=\partial_jW$ and $W$ meets $\mathbb{R}^{n+k}\times\{j\}$ transversally
</wikitex>
</wikitex>

Revision as of 10:47, 2 April 2012

Part 1

Let X be a connected finite Poincare complex of dimension n and let k\geq0. We define

\displaystyle  \mathcal{N}_n(X,k):= \left\{ [\xi,M,i,f,\overline{f}] | \begin{array}{l} \xi\textrm{ vector bundle of rank }k\textrm{ over }X,\,  M\textrm{ closed manifold of dimension }n,\, i:\,M\to\mathbb{R}^{n+k}\textrm{ embedding},\, (f,\overline{f}):\,\nu(M,i)\to\xi\textrm{ bundle map},\, f\textrm{ of degree }1 \end{array} \right\}

where we identify (\xi_0,M_0,i_0,f_0,\overline{f_0})\sim(\xi_1,M_1,i_1,f_1,\overline{f_1}) iff

1) there exists W compact manifold of dimension n+1 such that \partial W=\partial_0W\amalg\partial_1W

2) there exists an embedding I: W\to\mathbb{R}^{n+k}\times[0,1] such that for j=0,1 we have I^{-1}(\mathbb{R}^{n+k}\times\{j\})=\partial_jW and W meets \mathbb{R}^{n+k}\times\{j\} transversally

Personal tools
Namespaces
Variants
Actions
Navigation
Interaction
Toolbox