Surgery obstruction, signature (Ex)

(Difference between revisions)
Jump to: navigation, search
(Created page with "<wikitex>; ... </wikitex> == References == {{#RefList:}} Category:Exercises Category:Exercises without solution")
Line 1: Line 1:
<wikitex>;
<wikitex>;
...
+
'''1)''' Let $(\overline{f},f):M^{2n} \to X$ be an $n$-connected degree one normal map. Let $(K_n(M),\lambda, \mu)$ be the associated kernel form. Prove that signature satisfies the relation $$\mathrm{sign}(K_n(M),\lambda) = \mathrm{sign}(H_n(M),\lambda_M) - \mathrm{sign}(H_n(X),\lambda_X).$$
+
+
'''2)''' Prove that if $\mathrm{sign}(K_n(M),\lambda)=0 $ then we can find a Lagrangian with respect to $\lambda$. (This is proven in \cite{Milnor1961|Lemma 8 and 9 of Milnor1961}
+
+
You may assume the following lemma:
+
{{beginthm|Lemma|\cite{Milnor1961|Lemma 8}}
+
A quadratic form $\varphi$ with integer coefficients and determinant $\pm 1$ has a non-trivial zero if and only if it is indefinite.
+
{{endthm}}
+
</wikitex>
</wikitex>
== References ==
== References ==

Revision as of 21:32, 25 August 2013

1) Let (\overline{f},f):M^{2n} \to X be an n-connected degree one normal map. Let (K_n(M),\lambda, \mu) be the associated kernel form. Prove that signature satisfies the relation
\displaystyle \mathrm{sign}(K_n(M),\lambda) = \mathrm{sign}(H_n(M),\lambda_M) - \mathrm{sign}(H_n(X),\lambda_X).

2) Prove that if \mathrm{sign}(K_n(M),\lambda)=0 then we can find a Lagrangian with respect to \lambda. (This is proven in [Milnor1961, Lemma 8 and 9 of Milnor1961]

You may assume the following lemma: {{beginthm|Lemma|[Milnor1961, Lemma 8]} A quadratic form \varphi with integer coefficients and determinant \pm 1 has a non-trivial zero if and only if it is indefinite. </div>


References

Personal tools
Namespaces
Variants
Actions
Navigation
Interaction
Toolbox