Sandbox

From Manifold Atlas
Revision as of 00:05, 3 July 2010 by Philipp Kuehl (Talk | contribs)
Jump to: navigation, search

The sandbox is the page where you can experiment with the wiki syntax. Feel free to write nonsense or clear the page whenever you want.

  • For the more general case where A H_1(M) \neq 0/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_kn5LBs, see 6-manifolds: 1-connected.

Contents

1 Introduction

\ZZZ/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_Cauu4r

\displaystyle  f = g/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_AUtWyF

6.1 Let \mathcal{M}_6(0)/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_4UK8qT be the set of diffeomorphism classes of closed smooth simply-connected 2-connected 6-manifolds M/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_aRW7G7.

The classification \mathcal{M}_6(0)/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_Ev3drm was one of Smale's first applications of the h-cobordism theorem [Smale1962a, Corollary 1.3]. The classification, as for oriented surfaces is strikingly simple: every 2-connected 6-manifold M/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_qmmfBB is diffeomorphic to a connected-sum

\displaystyle  M \cong \sharp_r(S^3 \times S^3)/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_qnjw8Q

where by definition \sharp_0(S^3 \times S^3) = S^6/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_aLTx36 and in general r/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_ClInmn is determined by the formula for the Euler characteristic of M/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_CY8V1D

\displaystyle  \chi(M) = 2 - 2r./var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_INc04U

Construction and examples L^2/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_KgYyqu

The following gives a complete list of 2-connected 6-manifolds up to diffeomorphism:

  • S^6/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_gQzCKM, the standard 6-sphere.
  • \sharp_b(S^3 \times S^3)/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_AxQLt5, the b/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_iQq7Bo-fold connected sum of S^3 \times S^3/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_kBvU9H.

2 Invariants

Suppose that M/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_SQuM71 is diffeomorphic to \sharp_b(S^3 \times S^3)/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_4PjYtm then:

  • \pi_3(M) \cong H_3(M) \cong \Zz^{2b}/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_STfqkH,
  • the third Betti-number of M/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_QWzwA2 is given by b_3(M) = 2b/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_qbUEfo,
  • the Euler characteristic of M/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_2JLpjK is given by \chi(M) = 2 - 2b/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_y0yiL6,
  • the intersection form of M/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_seJXBt is isomorphic to the sum of b-copies of H_{-}(\Zz)/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_shTiRQ, the standard skew-symmetric hyperbolic form on \Zz^2/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_Qe0Tve.


Classification

Recall that the following theorem was stated in other words in the introduction:

Theorem 5.1 [Smale1962a, Corolary 1.3]. The semi-group of 2-connected 6-manifolds is generated by S^3 \times S^3.

Hence if \Nn denotes the natural numbers we obtain a bijection

\displaystyle  \mathcal{M}_6(0)\equiv \Nn,[M] \mapsto \frac{1}{2}b_3(M).

3 Further discussion

3.1 Topological 2-connected 6-manifolds

Let \mathcal{M}^{\Top}_6(e) be the set of homeomorphism classes of topological 2-connected 6-manifolds.

Theorem 6.1. Every topological 2-connected 6-manifold admits a smooth structure which is unique up to diffoemorphism. That is, there is a bijection

\displaystyle  \mathcal{M}_6(e) \rightarrow \mathcal{M}^{\Top}_6(e).

Proof. For any such manifold M we have H^4(M; \Zz/2) \cong 0 and so M is smoothable (see 6-manifolds: 1-connected). Any two homeomorphic manifolds have the same Euler Characteristic and so by Theorem 5.1 are diffeomorphic.

\square

Mapping class groups

...

4 References

Personal tools
Namespaces
Variants
Actions
Navigation
Interaction
Toolbox