Sandbox

From Manifold Atlas
Revision as of 00:04, 3 July 2010 by Philipp Kuehl (Talk | contribs)
Jump to: navigation, search

The sandbox is the page where you can experiment with the wiki syntax. Feel free to write nonsense or clear the page whenever you want.

  • For the more general case where A H_1(M) \neq 0/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_WOA7MO, see 6-manifolds: 1-connected.

Contents

1 Introduction

\ZZZ/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_GAlWxv

\displaystyle  f = g/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_0PCPct

1 Let \mathcal{M}_6(0)/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_yizvkr be the set of diffeomorphism classes of closed smooth simply-connected 2-connected 6-manifolds M/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_eJDbdq.

The classification \mathcal{M}_6(0)/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_q7r8tp was one of Smale's first applications of the h-cobordism theorem [Smale1962a, Corollary 1.3]. The classification, as for oriented surfaces is strikingly simple: every 2-connected 6-manifold M/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_i0uhbp is diffeomorphic to a connected-sum

\displaystyle  M \cong \sharp_r(S^3 \times S^3)/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_OYFLgp

where by definition \sharp_0(S^3 \times S^3) = S^6/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_oxuXHo and in general r/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_AlZxEp is determined by the formula for the Euler characteristic of M/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_gkoC7q

\displaystyle  \chi(M) = 2 - 2r./var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_QaUuZs

Construction and examples L^2/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_QoeMUx

The following gives a complete list of 2-connected 6-manifolds up to diffeomorphism:

  • S^6/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_IFYTWA, the standard 6-sphere.
  • \sharp_b(S^3 \times S^3)/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_a0B1lE, the b/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_mRHE9H-fold connected sum of S^3 \times S^3/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_uu7kkM.

2 Invariants

Suppose that M/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_cpXqTQ is diffeomorphic to \sharp_b(S^3 \times S^3)/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_Cwk8PV then:

  • \pi_3(M) \cong H_3(M) \cong \Zz^{2b}/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_KT2La1,
  • the third Betti-number of M/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_QvMNT6 is given by b_3(M) = 2b/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_c7YR0c,
  • the Euler characteristic of M/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_gqFQwj is given by \chi(M) = 2 - 2b/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_yoSOpq,
  • the intersection form of M/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_65Y0Fx is isomorphic to the sum of b-copies of H_{-}(\Zz)/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_C4wRiF, the standard skew-symmetric hyperbolic form on \Zz^2/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_8SZAoN.


Classification

Recall that the following theorem was stated in other words in the introduction:

Theorem 5.1 [Smale1962a, Corolary 1.3]. The semi-group of 2-connected 6-manifolds is generated by S^3 \times S^3.

Hence if \Nn denotes the natural numbers we obtain a bijection

\displaystyle  \mathcal{M}_6(0)\equiv \Nn,[M] \mapsto \frac{1}{2}b_3(M).

3 Further discussion

3.1 Topological 2-connected 6-manifolds

Let \mathcal{M}^{\Top}_6(e)/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_SSZ7UV be the set of homeomorphism classes of topological 2-connected 6-manifolds.

Theorem 6.1. Every topological 2-connected 6-manifold admits a smooth structure which is unique up to diffoemorphism. That is, there is a bijection

\displaystyle  \mathcal{M}_6(e) \rightarrow \mathcal{M}^{\Top}_6(e)./var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_YGPJP4

Proof. For any such manifold M we have H^4(M; \Zz/2) \cong 0/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_QhmB9d and so M is smoothable (see 6-manifolds: 1-connected). Any two homeomorphic manifolds have the same Euler Characteristic and so by Theorem 5.1 are diffeomorphic.

\square

Mapping class groups

...

4 References

Personal tools
Namespaces
Variants
Actions
Navigation
Interaction
Toolbox