Sandbox

From Manifold Atlas
Revision as of 00:04, 3 July 2010 by Philipp Kuehl (Talk | contribs)
Jump to: navigation, search

The sandbox is the page where you can experiment with the wiki syntax. Feel free to write nonsense or clear the page whenever you want.

  • For the more general case where A H_1(M) \neq 0/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_Q11PjU, see 6-manifolds: 1-connected.

Contents

1 Introduction

\ZZZ/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_ygbEyJ

\displaystyle  f = g/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_ozNR2U

1 Let \mathcal{M}_6(0)/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_O3dnV6 be the set of diffeomorphism classes of closed smooth simply-connected 2-connected 6-manifolds M/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_C3oFcj.

The classification \mathcal{M}_6(0)/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_aJv2Rv was one of Smale's first applications of the h-cobordism theorem [Smale1962a, Corollary 1.3]. The classification, as for oriented surfaces is strikingly simple: every 2-connected 6-manifold M/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_koLsXI is diffeomorphic to a connected-sum

\displaystyle  M \cong \sharp_r(S^3 \times S^3)/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_YVwbrW

where by definition \sharp_0(S^3 \times S^3) = S^6/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_oOBeTa and in general r/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_W7YYNp is determined by the formula for the Euler characteristic of M/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_KzKc6E

\displaystyle  \chi(M) = 2 - 2r./var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_OCucNU

Construction and examples L^2/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_QmM8mr

The following gives a complete list of 2-connected 6-manifolds up to diffeomorphism:

  • S^6/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_eHEmfI, the standard 6-sphere.
  • \sharp_b(S^3 \times S^3)/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_IrKdtZ, the b/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_Mjv35g-fold connected sum of S^3 \times S^3/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_Qm0k7y.

2 Invariants

Suppose that M/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_axRlxR is diffeomorphic to \sharp_b(S^3 \times S^3)/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_QfHQla then:

  • \pi_3(M) \cong H_3(M) \cong \Zz^{2b}/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_gjtn1t,
  • the third Betti-number of M/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_614U8N is given by b_3(M) = 2b/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_sS3KG8,
  • the Euler characteristic of M/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_CfXODt is given by \chi(M) = 2 - 2b/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_6tCo0O,
  • the intersection form of M/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_QuIdMa is isomorphic to the sum of b-copies of H_{-}(\Zz)/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_S7iPXw, the standard skew-symmetric hyperbolic form on \Zz^2/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_CKLdzT.


Classification

Recall that the following theorem was stated in other words in the introduction:

Theorem 5.1 [Smale1962a, Corolary 1.3]. The semi-group of 2-connected 6-manifolds is generated by S^3 \times S^3.

Hence if \Nn denotes the natural numbers we obtain a bijection

\displaystyle  \mathcal{M}_6(0)\equiv \Nn,[M] \mapsto \frac{1}{2}b_3(M).

3 Further discussion

3.1 Topological 2-connected 6-manifolds

Let \mathcal{M}^{\Top}_6(e)/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_EGFRCg be the set of homeomorphism classes of topological 2-connected 6-manifolds.

Theorem 6.1. Every topological 2-connected 6-manifold admits a smooth structure which is unique up to diffoemorphism. That is, there is a bijection

\displaystyle  \mathcal{M}_6(e) \rightarrow \mathcal{M}^{\Top}_6(e)./var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_cq1e6D

Proof. For any such manifold M we have H^4(M; \Zz/2) \cong 0 and so M is smoothable (see 6-manifolds: 1-connected). Any two homeomorphic manifolds have the same Euler Characteristic and so by Theorem 5.1 are diffeomorphic.

\square

Mapping class groups

...

4 References

Personal tools
Namespaces
Variants
Actions
Navigation
Interaction
Toolbox