Sandbox

From Manifold Atlas
Revision as of 10:08, 2 July 2010 by Diarmuid Crowley (Talk | contribs)
Jump to: navigation, search

The sandbox is the page where you can experiment with the wiki syntax. Feel free to write nonsense or clear the page whenever you want.

  • For the more general case where A H_1(M) \neq 0/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_zcqTMQ, see 6-manifolds: 1-connected.

Contents

1 Introduction

\ZZZ/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_nF5Tmb

\displaystyle  f = g/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_RGwLl4

Let \mathcal{M}_6(0)/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_vuJ0HX be the set of diffeomorphism classes of closed smooth simply-connected 2-connected 6-manifolds M/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_HyTJsR.

The classification \mathcal{M}_6(0)/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_zNhTBL was one of Smale's first applications of the h-cobordism theorem [Smale1962a, Corollary 1.3]. The classification, as for oriented surfaces is strikingly simple: every 2-connected 6-manifold M/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_JW3xfG is diffeomorphic to a connected-sum

\displaystyle  M \cong \sharp_r(S^3 \times S^3)/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_3J9HgB

where by definition \sharp_0(S^3 \times S^3) = S^6/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_v8XPHw and in general r/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_ZwvCzs is determined by the formula for the Euler characteristic of M/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_treUPo

\displaystyle  \chi(M) = 2 - 2r./var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_nNAfvl

Construction and examples L^2/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_7og16f

The following gives a complete list of 2-connected 6-manifolds up to diffeomorphism:

  • S^6/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_L0YA4d, the standard 6-sphere.
  • \sharp_b(S^3 \times S^3)/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_BTOlqc, the b/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_xGvkab-fold connected sum of S^3 \times S^3/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_JMwuja.

2 Invariants

Suppose that M/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_NYBTR9 is diffeomorphic to \sharp_b(S^3 \times S^3)/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_pHQYO9 then:

  • \pi_3(M) \cong H_3(M) \cong \Zz^{2b}/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_TIryba,
  • the third Betti-number of M/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_VXpMYa is given by b_3(M) = 2b/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_1MB3ac,
  • the Euler characteristic of M/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_poHONd is given by \chi(M) = 2 - 2b/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_1hIiQf,
  • the intersection form of M/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_VuoChi is isomorphic to the sum of b-copies of H_{-}(\Zz)/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_jnKL7k, the standard skew-symmetric hyperbolic form on \Zz^2/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_DiWino.


Classification

Recall that the following theorem was stated in other words in the introduction:

Theorem 5.1 [Smale1962a, Corolary 1.3]. The semi-group of 2-connected 6-manifolds is generated by S^3 \times S^3.

Hence if \Nn denotes the natural numbers we obtain a bijection

\displaystyle  \mathcal{M}_6(0)\equiv \Nn,[[User:Diarmuid Crowley|Diarmuid Crowley]][M] \mapsto \frac{1}{2}b_3(M).

3 Further discussion

3.1 Topological 2-connected 6-manifolds

Let $\mathcal{M}^{\Top}_6(e)$ be the set of homeomorphism classes of topological 2-connected 6-manifolds.

Theorem 6.1. Every topological 2-connected 6-manifold admits a smooth structure which is unique up to diffoemorphism. That is, there is a bijection $$ \mathcal{M}_6(e) \rightarrow \mathcal{M}^{\Top}_6(e).$$

Proof. For any such manifold $M$ we have $H^4(M; \Zz/2) \cong 0$ and so $M$ is smoothable (see 6-manifolds: 1-connected). Any two homeomorphic manifolds have the same Euler Characteristic and so by Theorem 5.1 are diffeomorphic.

\square

3.2 Mapping class groups

... </wikitex>

4 References

Personal tools
Namespaces
Variants
Actions
Navigation
Interaction
Toolbox