Sandbox

From Manifold Atlas
Revision as of 11:40, 28 June 2010 by Khuel (Talk | contribs)
Jump to: navigation, search

The sandbox is the page where you can experiment with the wiki syntax. Feel free to write nonsense or clear the page whenever you want.

  • For the more general case where A H_1(M) \neq 0/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_AhkgXe, see 6-manifolds: 1-connected.

Contents

1 Introduction

\ZZZ/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_8ZU1Q2 Let \mathcal{M}_6(0)/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_eaJp8d be the set of diffeomorphism classes of closed smooth simply-connected 2-connected 6-manifolds M/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_uaTMOp.

The classification \mathcal{M}_6(0)/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_uDA6SB was one of Smale's first applications of the h-cobordism theorem [Smale1962a, Corollary 1.3]. The classification, as for oriented surfaces is strikingly simple: every 2-connected 6-manifold M/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_8VX8mO is diffeomorphic to a connected-sum

\displaystyle  M \cong \sharp_r(S^3 \times S^3)/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_AP6xe1

where by definition \sharp_0(S^3 \times S^3) = S^6/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_mZh1xe and in general r/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_8YSvis is determined by the formula for the Euler characteristic of M/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_mffXqG

\displaystyle  \chi(M) = 2 - 2r./var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_W0EZWU

Construction and examples L^2/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_iDbAbp

The following gives a complete list of 2-connected 6-manifolds up to diffeomorphism:

  • S^6/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_II8YSE, the standard 6-sphere.
  • \sharp_b(S^3 \times S^3)/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_Q9hR6U, the b/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_AApZJb-fold connected sum of S^3 \times S^3/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_IMxjKs.

2 Invariants

Suppose that M/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_ubLf9J is diffeomorphic to \sharp_b(S^3 \times S^3)/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_eyBOW1 then:

  • \pi_3(M) \cong H_3(M) \cong \Zz^{2b}/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_qrc28j,
  • the third Betti-number of M/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_wHGbKC is given by b_3(M) = 2b/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_k236JV,
  • the Euler characteristic of M/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_UjT27e is given by \chi(M) = 2 - 2b/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_kYx6Ty,
  • the intersection form of M/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_4l6T4S is isomorphic to the sum of b-copies of H_{-}(\Zz)/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_aXy8Dd, the standard skew-symmetric hyperbolic form on \Zz^2/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_MxrFBy.

3 Classification

Recall that the following theorem was stated in other words in the introduction:

Theorem 4.1 [Smale1962a, Corolary 1.3]. The semi-group of 2-connected 6-manifolds is generated by $S^3 \times S^3$.

Hence if $\Nn$ denotes the natural numbers we obtain a bijection $$ \mathcal{M}_6(0)\equiv \Nn,Diarmuid Crowley[M] \mapsto \frac{1}{2}b_3(M).$$

4 Further discussion

4.1 Topological 2-connected 6-manifolds

Let $\mathcal{M}^{\Top}_6(e)$ be the set of homeomorphism classes of topological 2-connected 6-manifolds.

Theorem 5.1. Every topological 2-connected 6-manifold admits a smooth structure which is unique up to diffoemorphism. That is, there is a bijection $$ \mathcal{M}_6(e) \rightarrow \mathcal{M}^{\Top}_6(e).$$

Proof. For any such manifold $M$ we have $H^4(M; \Zz/2) \cong 0$ and so $M$ is smoothable (see 6-manifolds: 1-connected). Any two homeomorphic manifolds have the same Euler Characteristic and so by Theorem 4.1 are diffeomorphic.

\square

4.2 Mapping class groups

... </wikitex>

5 References

Personal tools
Namespaces
Variants
Actions
Navigation
Interaction
Toolbox