Sandbox

From Manifold Atlas
Revision as of 11:55, 11 June 2010 by Philipp Kuehl (Talk | contribs)
Jump to: navigation, search

The sandbox is the page where you can experiment with the wiki syntax. Feel free to write nonsense or clear the page whenever you want.

Write here...

Introduction

Let \mathcal{M}_6(0)/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_pV0e23 be the set of diffeomorphism classes of closed smooth simply-connected 2-connected 6-manifolds M/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_B2Mo06.

The classification \mathcal{M}_6(0)/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_tLe6ma was one of Smale's first applications of the h-cobordism theorem [Smale1962a, Corollary 1.3]. The classification, as for oriented surfaces is strikingly simple: every 2-connected 6-manifold M/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_7EJ2ne is diffeomorphic to a connected-sum

\displaystyle  M \cong \sharp_r(S^3 \times S^3)/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_XZMpOi

where by definition \sharp_0(S^3 \times S^3) = S^6/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_xTuIDn and in general r/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_hhY5Rs is determined by the formula for the Euler characteristic of M/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_LtZ3uy

\displaystyle  \chi(M) = 2 - 2r./var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_rHNNwE

1 Construction and examples

The following gives a complete list of 2-connected 6-manifolds up to diffeomorphism:

  • S^6/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_9sLkWR, the standard 6-sphere.
  • \sharp_b(S^3 \times S^3)/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_Tg3XgZ, the b/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_J8B996-fold connected sum of S^3 \times S^3/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_j8X1rf.

2 Invariants

Suppose that M/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_VSSW8n is diffeomorphic to \sharp_b(S^3 \times S^3)/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_9Khffx then:

  • \pi_3(M) \cong H_3(M) \cong \Zz^{2b}/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_nIf0KG,
  • the third Betti-number of M/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_riX9FQ is given by b_3(M) = 2b/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_37GpTZ,
  • the Euler characteristic of M/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_f7cTBa is given by \chi(M) = 2 - 2b/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_1FyKUl,
  • the intersection form of M/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_zjfmDx is isomorphic to the sum of b-copies of H_{-}(\Zz)/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_5voEKJ, the standard skew-symmetric hyperbolic form on \Zz^2/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_dylmiW.

3 Classification

Recall that the following theorem was stated in other words in the introduction:

Theorem 11.1 [Smale1962a, Corolary 1.3]. The semi-group of 2-connected 6-manifolds is generated by S^3 \times S^3/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_bKckh9.

Hence if \Nn/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_lsuZJm denotes the natural numbers we obtain a bijection

\displaystyle  \mathcal{M}_6(0)\equiv \Nn,~~~[M] \mapsto \frac{1}{2}b_3(M)./var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_9CcEFA

4 Further discussion

4.1 Topological 2-connected 6-manifolds

Let \mathcal{M}^{\Top}_6(e)/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_70rZ1O be the set of homeomorphism classes of topological 2-connected 6-manifolds.

Theorem 14.1. Every topological 2-connected 6-manifold admits a smooth structure which is unique up to diffoemorphism. That is, there is a bijection

\displaystyle  \mathcal{M}_6(e) \rightarrow \mathcal{M}^{\Top}_6(e)./var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_1iOBN3

Proof. For any such manifold M/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_xwaDYi we have H^4(M; \Zz/2) \cong 0/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_jmPevy and so M/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_lRw0oO is smoothable (see 6-manifolds: 1-connected). Any two homeomorphic manifolds have the same Euler Characteristic and so by Theorem 11.1 are diffeomorphic.

\square

4.2 Mapping class groups

...

References

Personal tools
Namespaces
Variants
Actions
Navigation
Interaction
Toolbox