# Sandbox

m (→Existence of embeddings) |
m |
||

Line 12: | Line 12: | ||

}} --> | }} --> | ||

− | + | {{beginthm|Theorem|\cite{Penrose&Whitehead&Zeeman1961}}}\label{thm:2.1} | |

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | {{beginthm| | + | |

− | + | ||

− | { | + | |

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

For every compact $m$--dimensional PL-manifold $M$ there exists a PL--embedding $ M \hookrightarrow \R^{2m}$. | For every compact $m$--dimensional PL-manifold $M$ there exists a PL--embedding $ M \hookrightarrow \R^{2m}$. | ||

{{endthm}} | {{endthm}} | ||

− | {{ | + | {{beginrem|Remark}} |

For a good exposition of Theorem \ref{thm:2.1} see also \cite{Rourke&Sanderson1972a|p. 63}. | For a good exposition of Theorem \ref{thm:2.1} see also \cite{Rourke&Sanderson1972a|p. 63}. | ||

− | {{ | + | {{endrem}} |

− | {{beginthm|Theorem| | + | {{beginthm|Theorem|\cite{Whitney1944}}}\label{thm:2.2} |

− | + | ||

For every closed m--dimensional $C^{\infty}$--manifold $M$ there exists a $C^{\infty}$--embedding $M \hookrightarrow \R^{2m}$. | For every closed m--dimensional $C^{\infty}$--manifold $M$ there exists a $C^{\infty}$--embedding $M \hookrightarrow \R^{2m}$. | ||

{{endthm}} | {{endthm}} | ||

− | {{beginrem|Remark | + | {{beginrem|Remark}} |

For a more modern exposition see also \cite{Adachi1993|p. 67ff}. | For a more modern exposition see also \cite{Adachi1993|p. 67ff}. | ||

{{endrem}} | {{endrem}} | ||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

\begin{theorem} \label{thm:1} | \begin{theorem} \label{thm:1} |

## Revision as of 07:11, 25 April 2013

The sandbox is the page where you can experiment with the wiki syntax. Feel free to write nonsense or clear the page whenever you want. |

**Theorem 0.1** [Penrose&Whitehead&Zeeman1961]**.**
For every compact $m$--dimensional PL-manifold $M$ there exists a PL--embedding $ M \hookrightarrow \R^{2m}$.

**Remark 0.2.**
For a good exposition of Theorem 0.1 see also [Rourke&Sanderson1972a, p. 63].

**Theorem 0.3** [Whitney1944]**.**
For every closed m--dimensional $C^{\infty}$--manifold $M$ there exists a $C^{\infty}$--embedding $M \hookrightarrow \R^{2m}$.

**Remark 0.4.**
For a more modern exposition see also [Adachi1993, p. 67ff].

**Theorem 0.5.**
We have $f \colon X \to Y$

Reference 0.5

By Theorem

**(**1.2

**)**

{{#addlabel: test}}

**Theorem 0.6.**
Frog

1 \ref{eqtest}

Here is some text leading up to an equation

** 0.7.**
$$ A = B $$

Here is some more text after the equation to see how it looks.

Here is some text leading up to an equation $$ A = B $$ Here is some more text after the equation to see how it looks.

4k 8 12 16 20 24 28 32 order bP _{4k}2 ^{2}.72 ^{5}.312 ^{6}.1272 ^{9}.5112 ^{10}.2047.6912 ^{13}.81912 ^{14}.16384.3617

k 1 2 3 4 5 6 7 8 B _{k}1/6 1/30 1/42 1/30 5/66 691/2730 7/6 3617/510

Dim n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 order Θ _{n}1 1 1 1 1 1 28 2 8 6 992 1 3 2 16256 2 16 16 523264 24 *bP*_{n+1}1 1 1 1 1 1 28 1 2 1 992 1 1 1 8128 1 2 1 261632 1 Θ _{n}/*bP*_{n+1}1 1 1 1 1 1 1 2 2×2 6 1 1 3 2 2 2 2×2×2 8×2 2 24 π _{n}^{S}/*J*1 2 1 1 1 2 1 2 2×2 6 1 1 3 2×2 2 2 2×2×2 8×2 2 24 index - 2 - - - 2 - - - - - - - 2 - - - - - -

$$ f \colon X \to Y $$

*Extension DPL (warning): current configuration allows execution of DPL code from protected pages only.*

Just a fest $f \colon A \to B$.

$\Q$

**a theorem 0.8.**

$\text{Spin}$

by theorem 0.8

- Amsterdam
- Rotterdam
- The Hague

[Mess1990]

$\left( \begin{array}{ll} \alpha & \beta \\ \gamma & \delta \end{array} \right)$

$f = T$

$ f : X \to Y$

$$ f : X \to Y $$

$\Ker$

$\mathscr{A}$ $\mathscr{B}$

** bold** *italic* *emphasis*

</wikitex>

## Contents |

## 1 Tests

[Ranicki1981] [Milnor1956] [Milnor1956, Theorem 1] [Milnor1956] [Milnor1956, Theorem 1] Frog

**Proof.**

## 2 Section

### 2.1 Subsection

Refert to subsection 2.1

**Theorem 2.1.**
test

Refer to theorem 2.1

## 3 Section

An inter-Wiki link.

Another ^{[1]}; inter-Wiki link.

dfa^{[2]}