Group actions on disks

(Difference between revisions)
Jump to: navigation, search
(Oliver number)
(Oliver number)
Line 16: Line 16:
Oliver has determined integer $n_G$ in the papers \cite{Oliver1975}, \cite{Oliver1977}, and \cite{Oliver1978}. In particular, the following lemma holds.
Oliver has determined integer $n_G$ in the papers \cite{Oliver1975}, \cite{Oliver1977}, and \cite{Oliver1978}. In particular, the following lemma holds.
{{beginthm|Lemma}}
+
{{beginthm|Lemma|(Oliver)}}
For a finite group $G$ not of prime power order, $n_G=1$ if and only if there does not exist a sequence $P\trianglelefteq H\trianglelefteq G$ of normal subgroups such that $P$ is a $p$-group, $G/H$ is a $q$-group, and $H/P$ is cyclic for two (possibly the same) primes $p$ and $q$.
For a finite group $G$ not of prime power order, $n_G=1$ if and only if there does not exist a sequence $P\trianglelefteq H\trianglelefteq G$ of normal subgroups such that $P$ is a $p$-group, $G/H$ is a $q$-group, and $H/P$ is cyclic for two (possibly the same) primes $p$ and $q$.
{{endthm}}
{{endthm}}

Revision as of 11:48, 27 November 2010

This page has not been refereed. The information given here might be incomplete or provisional.

Contents

1 Topological actions

2 Smooth actions

2.1 Fixed point free

2.1.1 History

Floyd and Richardson [Floyd&Richardson1959] have constructed for the first time a smooth fixed point free action of G on a disk for G=A_5, the alternating group on five letters (see [Bredon1972, pp. 55-58] for a transparent description of the construction). Next, Greever [Greever1960] has described plenty of finite solvable groups G, which can act smoothly on disks without fixed points. Then, Oliver [Oliver1975] and [Oliver1976], has answered completely the question of which compact Lie groups admit smooth fixed point free actions on disks.

2.1.2 Oliver number

Let G be a finite group not of prime power order. Oliver in [Oliver1975] proved that the set
\displaystyle \{\chi(X^G)-1\colon X\textup{ is a contractible }G\textup{-CW-complex}\}
is a subgroup of the group of integers \mathbb{Z}. Therefore, the set is of the form n_G\cdot \mathbb{Z} for a unique integer n_G\geq 0, which we refer to as the Oliver number of G.

Oliver has determined integer n_G in the papers [Oliver1975], [Oliver1977], and [Oliver1978]. In particular, the following lemma holds.

Lemma 2.1 (Oliver). For a finite group G not of prime power order, n_G=1 if and only if there does not exist a sequence P\trianglelefteq H\trianglelefteq G of normal subgroups such that P is a p-group, G/H is a q-group, and H/P is cyclic for two (possibly the same) primes p and q.

Moreover, the work [Oliver1977, Theorem 7] yields the following proposition.

Proposition 2.2. For a finite nilpotent group G not of prime power order, the following conclusions hold:

  • n_G=0 if G has at most one non-cyclic Sylow subgroup.
  • n_G=pq for two distinct primes p and q, if G has just one non-cyclic p-Sylow and q-Sylow subgroups.
  • n_G=1 if G has three or more non-cyclic Sylow subgroups.

The notion of the Oliver number n_G extends to compact Lie groups G as follows.

  • n_G=n_{G/G_0} if G_0 is abelian and G/G_0 is not of prime power order.
  • n_G=1 if G_0 is non-abelian (see [Oliver1976]).


2.1.3 Oliver group

In connection with the work on smooth one fixed point actions on spheres, Laitinen and Morimoto [Laitinen&Morimoto1998] have introduced the notion of Oliver group.

Definition 2.3. A finite group G not of prime power order is called an Oliver group if n_G=1.

Examples of finite Oliver groups include:

  • \mathbb{Z}_{pqr}\times \mathbb{Z}_{pqr} for three distinct primes p, q, and r.
  • the groups S_4\oplus \mathbb{Z}_3 and A_4\oplus S_3 of order 72 (which are solvable but not nilpotent).
  • finite non-solvable (in particular, non-trivial perfect) groups (e.g. A_n, S_n for n\geq 5).

2.1.4 Solution

Theorem 2.4 [Oliver1975]. Let G be a finite group not of prime power order. Then the following two conditions are equivalent.

  • There exists a smooth fixed point free action of G on some disk.
  • The Oliver number n_G=1.

Theorem 2.5 [Oliver1976]. Let G be a compact Lie group with non-abelian identity connected component G_0. Then there exist smooth fixed point free action of G on some disk.

Corollary 2.6. A compact Lie group G has a smooth fixed point free action on soome disk if and only if G_0 is non-abelian or n_{G/G_0}=1.


2.2 Fixed point sets

3 References

Personal tools
Namespaces
Variants
Actions
Navigation
Interaction
Toolbox