Grassmann manifolds

From Manifold Atlas
Revision as of 18:55, 26 November 2010 by Diarmuid Crowley (Talk | contribs)
Jump to: navigation, search

This page has not been refereed. The information given here might be incomplete or provisional.

Contents

1 Introduction

Grassmann manifolds are named after Hermann Grassmann, a German school teacher in Stettin who developed basic notions of linear algebra. Let \F/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_atNdIJ be the real, complex or quaternion field and V/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_beJPoc a vector space over \F/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_orcBuF of dimension n/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_ZsAKZ8 and let k\leq n/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_OOyTTC. A Grassmann manifolds of k/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_hMMRc7-dimensional subspaces is a set G_k(V)/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_6wkmUB of k/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_z2dB26-dimensional subspaces. The set G_k(V)/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_m6B9xC is a quotient of a subset of V\times ...\times V/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_jnKQZ8 consisting of linearly independent k/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_KBbCPF-tuples of vectors with the subspace topology. We define topology on G_k(V)/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_zuAl2c as the quotient topology.

Theorem 1.1 [Milnor&Stasheff1974]. G_k(V)/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_iyBvEK is a Hausdorff, compact space.
Theorem 1.2 [Milnor&Stasheff1974]. G_k(V)/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_1GztGi is a connected, compact smooth manifold of dimension dk(n-k)/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_Epg66Q. For
Tex syntax error
it is also a complex manifold.

Note that the Grassmann manifold G_k(V)/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_erg43Y around W\in G_k(V)/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_tJw8zy is locally modelled on the vector space Hom (W^\bot ,W)./var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_c8okv8 </div>

Grassmann manifold is a homogeneous space of the general linear group. General linear group GL(V)/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_zPY0OI acts transitively on G_k(V)/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_iTCnxj with an isotropy group consisting of automorphisms preserving a given subspace. If the space V/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_9v8vKU is equipped with a scalar product (hermitian metric resp.) then the group of isometries O(V)/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_M8U4lw acts transitively and the isotropy group of W/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_fDE4m8 is O(W^\bot)\times O(W)/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_g289LK.

The Grassmann manifold is equipped with the canonical, tautological vector bundle \gamma^V_k./var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_FXD8zn which is a subbundle of the trivial bundle G_k(V)\times V \to G_k(V)\times V/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_qavIM0. The total space is E(\gamma^V_k) = \{(W,w)\in G_k(V)\times V\, |\,\, w\in W \}/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_BBm2mE The total space of the associated principal bundle is a Stiefel manifold.

Proposition 1.3. There exist a natural diffeomorphism G_k(V)\simeq G_{n-k}(V^*)/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_Azg5ni.

The Grassmannians G_1(V)/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_5dVzPW are projective spaces, denoted P (V)/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_8PViHB. Note that G_1(F^2)=S^d/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_bds2Xg, where d=dim_R F/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_K0ViEW. If we identify S^d/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_N9ytKC with the one-point compactification of \F/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_aRURkj the projection of the canonical principal bundle corresponds to the map p_d :S^{2d-1}\to S^d/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_TI39j0 given by p_d(z_0,z_1)=z_0/z_1/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_GG30JH where z_i\in\F/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_3R4Nyp. Note, that the same formula works for octonions, however the higher dimensional projective spaces over octonions do not exist. The maps p_d :S^{2d-1}\to S^d/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_EDrVS7 for d=1,2,4,8/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_j6LODQ are called the Hopf maps and they play a very important role in homotopy theory; a fiber of p_d/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_MihENz is a sphere S^{d-1}/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_nD3cmj.

There is an embedding of the Grassmannian G_k(V)/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_uBpPj3 in the cartesian space \F^{n^2}=\Hom\,(F^n,F^n)/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_1BqzHN which assigns to every subspace the orthogonal projection on it. If V/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_qrwGuy is equipped with a norm, the embedding defines a natural (operator) metric on G_k(V)/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_hPsNIj.

Prove that there is a free action of the group O(k,\F)/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_0jvRl5 on V_k(\F^n)/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_f86BoR sucht that the orbit space is homeomorphic to G_k(\F^n)/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_0LsOQD. Similarly for the noncompact Stiefel manifold. \end{zad}

Prove that the map p:V_k(\F^n)\to G_k(\F^n)/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_PmKgIq is locally trivial (even a principal O(k,\F)/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_QoPJYd-bundle), thus a fibration.

2 Construction and examples

...

3 Invariants

...

4 Classification/Characterization

...

5 Further discussion

Grassmann manifolds are examples of coadjoint orbits [Kirillov2004].

6 References

Personal tools
Namespaces
Variants
Actions
Navigation
Interaction
Toolbox