Grassmann manifolds

From Manifold Atlas
Revision as of 14:14, 26 November 2010 by Stefan Jackowski (Talk | contribs)
Jump to: navigation, search


This page has not been refereed. The information given here might be incomplete or provisional.

Contents

1 Introduction

Grassmann manifolds are named after Hermann Grassmann, a German school teacher in Stettin who developed basic notions of linear algebra. Let
Tex syntax error
be the real, complex or quaternion field and V a vector space over K of dimension n and let k\leq n/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_qXpykb. A Grassmann manifolds of k-dimensional subspaces is a set G_k(V)/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_m0VtIg of k-dimensional subspaces. The set G_k(V) is a quotient of a subset of V\times ...\times V/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_M6Afwm consisting of linearly independent k-tuples of vectors with the subspace topology. We define topology on G_k(V) as the quotient topology.
Theorem 1.1 [{Milnor&Stasheff1974].} G_k(V) is a Hausdorff, compact space.
Theorem 1.2 [{Milnor&Stasheff1974].} G_k(V) is a connected, compact smooth manifold of dimension dk(n-k)/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_IHRBLs.

Note that the Grassmann manifold G_k(V) around W\in G_k(V)/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_kNafqz is locally modelled on the vector space Hom (W^\bot ,W)./var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_m4SfuG </div>

Grassmann manifold is a homogeneous space of the general linear group. General linear group GL(V)/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_UScbXN acts transitively on G_k(V) with an isotropy group consisting of automorphisms preserving a given subspace. If the space V is equipped with a scalar product (hermitian metric resp.) then the group of isometries O(V)/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_G40BPV acts transitively and the isotropy group of W is O(W^\bot)\times O(W)/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_UTKZ63.

The Grassmann manifold is equipped with the canonical, tautological vector bundle \gamma^V_k./var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_uWddPc which is a subbundle of the trivial bundle G_k(V)\times V \to G_k(V)\times V/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_u7LiEm. The total space is E(\gamma^V_k) = \{(W,w)\in G_k(V)\times V\, |\,\, w\in W \}/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_WVpsVw The total space of the associated principal bundle is a Stiefel manifold.

Proposition 1.3 [{Milnor&Stasheff1974].} There exist a natural diffeomorphism G_k(V)\simeq G_{n-k}(V^*)/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_C87CCH.
The Grassmannians G_1(V)/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_cfd1JS are projective spaces, denoted P (V)/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_m9Tri4. Note that G_1(F^2)=S^d/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_yVcWgg, where d=dim_R F/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_oGTlEs. If we identify S^d/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_YXBjqF with the one-point compactification of
Tex syntax error
the projection of the canonical principal bundle corresponds to the map p_d :S^{2d-1}\to S^d/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_YvU515 given by p_d(z_0,z_1)=z_0/z_1/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_oaf6Sj where
Tex syntax error
. Note, that the same formula works for octonions, however the higher dimensional projective spaces over octonions do not exist. The maps p_d :S^{2d-1}\to S^d for d=1,2,4,8/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_QDwCHM are called the Hopf maps and they play a very important role in homotopy theory; a fiber of p_d/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_iUKBE1 is a sphere S^{d-1}/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_Y2OKZg. There is an embedding of the Grassmannian
Tex syntax error
in the cartesian space
Tex syntax error
which assigns to every subsapce the orthogonal projection on it. The embedding defines a natural (operator) metric on
Tex syntax error
.


Prove that there is a free action of the group
Tex syntax error
on
Tex syntax error
sucht that the orbit space is homeomorphic to
Tex syntax error
. Similarly for the noncompact Stiefel manifold.

\end{zad}

Prove that the map
Tex syntax error
is locally trivial (even a principal
Tex syntax error
-bundle), thus a fibration.

They are examples of coadjoint orbits [Kirillov2004]

[Milnor&Stasheff1974]

Theorem 1.4.



2 Construction and examples

...

3 Invariants

...

4 Classification/Characterization

...

5 Further discussion

...

6 References

Personal tools
Namespaces
Variants
Actions
Navigation
Interaction
Toolbox