Algebraic surgery X (Ex)

From Manifold Atlas
(Difference between revisions)
Jump to: navigation, search
(Created page with "<wikitex>; Let $(f,b) \colon M \rightarrow X$ be a degree one normal map of $n$-GPC. Denote by $\nu_M$, $\nu_X$ the respective SNFs. We form the $(n+1)$-dimensional geometric ...")
m (correct Poincaré's name)
Line 2: Line 2:
Let $(f,b) \colon M \rightarrow X$ be a degree one normal map of $n$-GPC.
Let $(f,b) \colon M \rightarrow X$ be a degree one normal map of $n$-GPC.
Denote by $\nu_M$, $\nu_X$ the respective SNFs. We form the
Denote by $\nu_M$, $\nu_X$ the respective SNFs. We form the
$(n+1)$-dimensional geometric (normal,~Poincar\'e) pair
+
$(n+1)$-dimensional geometric (normal, Poincaré) pair
$$
$$
\big( (W,M \sqcup X), (\nu_W,\nu_{M \sqcup X}), (\rho_W,\rho_{M
\big( (W,M \sqcup X), (\nu_W,\nu_{M \sqcup X}), (\rho_W,\rho_{M

Latest revision as of 14:16, 1 June 2012

Let (f,b) \colon M \rightarrow X be a degree one normal map of n-GPC. Denote by \nu_M, \nu_X the respective SNFs. We form the (n+1)-dimensional geometric (normal, Poincaré) pair

\displaystyle  \big( (W,M \sqcup X), (\nu_W,\nu_{M \sqcup X}), (\rho_W,\rho_{M \sqcup X}) \big)

with W = \textup{cyl} (f). The symbol \nu_W denotes the k-spherical fibration over W induced by b and

\displaystyle  (\rho_W,\rho_{M \sqcup X}) \colon (D^{n+1+k},S^{n+k}) \rightarrow (\textup{Th} (\nu_W), \textup{Th} (\nu_M \sqcup \nu_X))

is the map induced by \rho_M and \rho_X and denote j \colon M \sqcup X \hookrightarrow W.

Let C' be the underlying chain complex obtained by algebraic surgery on the (n+1)-dimensional symmetric pair

\displaystyle  (j_\ast \colon C(M) \oplus C(X) \rightarrow C(W),(\delta \varphi,\varphi)).

Show that it is homotopy equivalent to the mapping cone \mathcal{C} (f^{!}) of the 'Umkehr' map associated to (f,b).

[edit] References

Personal tools
Namespaces
Variants
Actions
Navigation
Interaction
Toolbox