Petrie conjecture

From Manifold Atlas
Revision as of 02:40, 30 November 2010 by Krzysztof Pawałowski (Talk | contribs)
Jump to: navigation, search

This page has not been refereed. The information given here might be incomplete or provisional.

1 Introduction

The Petrie conjecture was formulated in the following context: suppose that a Lie group G acts smoothly on a closed smooth manifold M, what constraints does this place on the topology of M in general and on the Pontrjagin classes of M in particular.

Petrie restricted his attention to smooth actions of the Lie group S^1 [Petrie1972] (or more generally, the torus T^k for k \geq 1 [Petrie1973]) on closed smooth manifolds M which are homotopy equivalent to \CP^n. He has formulated the following conjecture.

Conjecture 0.1 [Petrie1972]. Suppose that M is a closed smooth manifold homotopy equivalent to \CP^n and that S^1 acts smoothly and non-trivially on M. Then the total Pontrjagin class of M agrees with that of \CP^n, i.e., p(M) = (1+x^2)^{n+1} for a generator x \in H^2(M; \mathbb{Z}).

2 References

Personal tools
Namespaces
Variants
Actions
Navigation
Interaction
Toolbox