Symplectic manifolds

From Manifold Atlas
Revision as of 10:59, 1 October 2010 by Kedra (Talk | contribs)
Jump to: navigation, search


This page has not been refereed. The information given here might be incomplete or provisional.

Contents

1 Introduction

A symplectic manifold is a smooth manifold M together with a differential two-form \omega that is nondegenerate and closed. The form \omega is called a symplectic form. The nondegeneracy means that the highest nonzero power of \omega is a volume form on M. It follows that a symplectic manifold is even dimensional.

Symplectic manifolds originated from classical mechanics. The phase space of a dynamical system is the cotangent bundle of the configuration space and it is equipped with a symplectic form. This symplectic form is preserved by the flow of the system.

2 Examples

\bullet The most basic example of a symplectic manifold is \mathbb R^{2n} equipped with the form \omega_0:=dx^1\wedge dy^1 + \ldots + dx^n\wedge dy^n.

A theorem of Darboux [McDuff-Salamon] states that locally every symplectic manifold if of this form. More precisely, if (M,\omega) is a symplectic 2n-manifold then for every point x\in M there exists an open neighbourhood U\subset M of p and a diffeomorphism f\colon U\to f(U)\subset \mathbb R^{2n} such that the restriction of \omega to U is equal to the pull-back f^*\omega_0. This implies that symplectic manifolds have no local invariants.

\bullet An area form on an oriented surface is symplectic.

\bullet Let X be a smooth manifold and let \lambda be a one-form on the cotangent bundle T^*X defined as follows. If V is a vector tangent to T^*X at a point \alpha then \lambda_{\alpha}(X) = \alpha (\pi_*(X)), where \pi\colon T^*X\to X is the projection. In local coordinates the form \lambda can be expressed as \sum y^idx^i. The differential d\lambda is a symplectic form on the cotangent bundle T^*X.

\bullet If (M,\omega) is a closed, i.e. compact and without boundary, symplectic 2n-manifold then the cohomology classes [\omega]^k are non-zero for k=0,1.\ldots,n. This follows from the fact that the cohomology class of the volume form \omega^n is nonzero on a closed manifold. This necessary condition implies that spheres of dimension greater than two are not symplectic. More generally, no closed manifold of the form M \times S^k is symplectic for k>2.





3 Invariants

...

4 Classification/Characterization

...

5 Further discussion

...

6 References

= L_X\omega = d\iota_X \omega + \iota _X d\omega.$ Then the closedness of the symplectic form implies that the one-form $\iota_X\omega$ is closed. It follows that the Lie algebra of the group of symplectic diffeomorhism consists of the vector fields $X$ for which the one-form $\iota _X \omega$ is closed. Hence it can be identified with the space of closed one-forms. If the one-form $\iota _X \omega$ is exact, i.e. $\iota _X \omega = dH$ for some function $H\colon M\to \mathbb R$ then the vector field $X$ is called Hamiltonian. Symplectic diffeomorphism generated by Hamiltonian flows form a group $\operatorname{Ham}(M,\omega)$ called the group of Hamiltonian diffeomorphism. Its Lie algebra can be identified with the quotient of the space of smooth functions on $M$ by the constants. ==Constructions== ===Products=== The product of symplectic manifolds $(M_1,\omega_1)$ and $(M_2,\omega_2)$ is a symplectic manifold with respect to the form $a\cdot p_1^*\omega_1 + b\cdot p_2^*\omega_2$ for nonzero real numbers $a,b\in \mathbb R.$ Here $p_i\colon M_1\times M_2\to M_i$ is the projection. ===Bundles=== A locally trivial bundle $M\to E\to B$ is called symplectic (resp. Hamiltonian) if its structure group is a subgroup of the group of symplectic (resp. Hamiltonian) diffeomorphisms. '''Example.''' The product of the Hopf bundle with the circle is a symplecti bundle $T^2 \to S^3 \times S^1 \to S^2.$ Indeed, the structure group is a group of rotations of the torus and hence it preserves the area. As we have seen above the product $S^3 \times S^1$ does not admit a symplectic form. This example shows that, in general, the total space of a symplectic bundle is not symplectic. Let $M\stackrel {i}\to E\stackrel{\pi}\to B$ is a compact symplectic bundle over a symplectic base. According to a theorem of Thurston, if there exists a cohomology class $a\in H^2(E)$ such that its pull back to every fibre is equal to the class of the symplectic form of the fibre then there exists a representative $\alpha $ of the class $a$ such that $\Omega := \alpha + k\cdot \pi^*(\omega_B)$ is a symplectic form on $E$ for every big enough $k.$ ===Surgery=== == Invariants == ; ... == Classification/Characterization == ; ... == Further discussion == ; ... == References == {{#RefList:}} [[Category:Manifolds]]M together with a differential two-form \omega that is nondegenerate and closed. The form \omega is called a symplectic form. The nondegeneracy means that the highest nonzero power of \omega is a volume form on M. It follows that a symplectic manifold is even dimensional.

Symplectic manifolds originated from classical mechanics. The phase space of a dynamical system is the cotangent bundle of the configuration space and it is equipped with a symplectic form. This symplectic form is preserved by the flow of the system.

2 Examples

\bullet The most basic example of a symplectic manifold is \mathbb R^{2n} equipped with the form \omega_0:=dx^1\wedge dy^1 + \ldots + dx^n\wedge dy^n.

A theorem of Darboux [McDuff-Salamon] states that locally every symplectic manifold if of this form. More precisely, if (M,\omega) is a symplectic 2n-manifold then for every point x\in M there exists an open neighbourhood U\subset M of p and a diffeomorphism f\colon U\to f(U)\subset \mathbb R^{2n} such that the restriction of \omega to U is equal to the pull-back f^*\omega_0. This implies that symplectic manifolds have no local invariants.

\bullet An area form on an oriented surface is symplectic.

\bullet Let X be a smooth manifold and let \lambda be a one-form on the cotangent bundle T^*X defined as follows. If V is a vector tangent to T^*X at a point \alpha then \lambda_{\alpha}(X) = \alpha (\pi_*(X)), where \pi\colon T^*X\to X is the projection. In local coordinates the form \lambda can be expressed as \sum y^idx^i. The differential d\lambda is a symplectic form on the cotangent bundle T^*X.

\bullet If (M,\omega) is a closed, i.e. compact and without boundary, symplectic 2n-manifold then the cohomology classes [\omega]^k are non-zero for k=0,1.\ldots,n. This follows from the fact that the cohomology class of the volume form \omega^n is nonzero on a closed manifold. This necessary condition implies that spheres of dimension greater than two are not symplectic. More generally, no closed manifold of the form M \times S^k is symplectic for k>2.





3 Invariants

...

4 Classification/Characterization

...

5 Further discussion

...

6 References

Personal tools
Namespaces
Variants
Actions
Navigation
Interaction
Toolbox