Sandbox

From Manifold Atlas
Revision as of 10:07, 11 June 2010 by Diarmuid Crowley (Talk | contribs)
Jump to: navigation, search

The sandbox is the page where you can experiment with the wiki syntax. Feel free to write nonsense or clear the page whenever you want.

Write here...

Introduction

Let \mathcal{M}_6(0)/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_7RGtA2 be the set of diffeomorphism classes of closed smooth simply-connected 2-connected 6-manifolds M/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_FXQqH0.

The classification \mathcal{M}_6(0)/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_BqjffZ was one of Smale's first applications of the h-cobordism theorem [Smale1962a, Corollary 1.3]. The classification, as for oriented surfaces is strikingly simple: every 2-connected 6-manifold M/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_V3b3eY is diffeomorphic to a connected-sum

\displaystyle  M \cong \sharp_r(S^3 \times S^3)/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_BSUFDY

where by definition \sharp_0(S^3 \times S^3) = S^6/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_RzzSCZ and in general r/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_F1OC20 is determined by the formula for the Euler characteristic of M/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_N98nQ2

\displaystyle  \chi(M) = 2 - 2r./var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_PiUj24

1 Construction and examples

The following gives a complete list of 2-connected 6-manifolds up to diffeomorphism:

  • S^6/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_5rsvDa, the standard 6-sphere.
  • \sharp_b(S^3 \times S^3)/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_pMue2d, the b/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_DQmkbj-fold connected sum of S^3 \times S^3/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_BWePHo.

2 Invariants

Suppose that M/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_prjICu is diffeomorphic to \sharp_b(S^3 \times S^3)/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_vUbAWA then:

  • \pi_3(M) \cong H_3(M) \cong \Zz^{2b}/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_Xuw6FH,
  • the third Betti-number of M/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_xBs4OO is given by b_3(M) = 2b/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_5T3XmW,
  • the Euler characteristic of M/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_bHmoj4 is given by \chi(M) = 2 - 2b/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_dm8FGc,
  • the intersection form of M/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_dRfktl is isomorphic to the sum of b-copies of H_{-}(\Zz)/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_xBpPEu, the standard skew-symmetric hyperbolic form on \Zz^2/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_bh1ifE.

3 Classification

Recall that the following theorem was stated in other words in the introduction:

Theorem 11.1 [Smale1962a, Corolary 1.3]. The semi-group of 2-connected 6-manifolds is generated by S^3 \times S^3/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_ZWwPfO.

Hence if \Nn/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_ZafcGY denotes the natural numbers we obtain a bijection

\displaystyle  \mathcal{M}_6(0)\equiv \Nn,~~~[M] \mapsto \frac{1}{2}b_3(M)./var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_By1sV9

4 Further discussion

4.1 Topological 2-connected 6-manifolds

Let \mathcal{M}^{\Top}_6(e)/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_BvBsBl be the set of homeomorphism classes of topological 2-connected 6-manifolds.

Theorem 14.1. Every topological 2-connected 6-manifold admits a smooth structure which is unique up to diffoemorphism. That is, there is a bijection

\displaystyle  \mathcal{M}_6(e) \rightarrow \mathcal{M}^{\Top}_6(e)./var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_nR9vGx

Proof. For any such manifold M/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_D3dRaK we have H^4(M; \Zz/2) \cong 0/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_FeIo3W and so M/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_Tnwala is smoothable (see 6-manifolds: 1-connected). Any two homeomorphic manifolds have the same Euler Characteristic and so by Theorem 11.1 are diffeomorphic.

\square

4.2 Mapping class groups

...


References

Personal tools
Namespaces
Variants
Actions
Navigation
Interaction
Toolbox