Talk:Microbundles (Ex)

From Manifold Atlas
(Difference between revisions)
Jump to: navigation, search
(2nd exercise WIP)
(2nd exercise finisher)
Line 1: Line 1:
<wikitex>;
<wikitex>;
In case of daubts You should get familiar with the definition of [[Microbundle|microbundle]].
+
First, You should get familiar with the definition of [[Microbundle|microbundle]].
{{beginthm|Exercise|{{citeD|Milnor1964|Lemma 2.1}}}}
{{beginthm|Exercise|{{citeD|Milnor1964|Lemma 2.1}}}}
Line 33: Line 33:
$$
$$
\xymatrix{
\xymatrix{
& V\ar[dd]^H \ar[rd]^{p_1}&\\
+
& V\ar[dd]^H \ar[rd]^{\pi}&\\
M\ar[dr]_{\Delta_M}\ar[ur]^{s_0} & & M\\
M\ar[dr]_{\Delta_M}\ar[ur]^{s_0} & & M\\
& M\times M \ar[ru]&}
+
& M\times M \ar[ru]_{p_1}&}
$$
$$
where $V\subset TM$ is an open neighbourhood of the zero section.
where $V\subset TM$ is an open neighbourhood of the zero section.
+
+
We need to find a neighbourhood $V$ and a map $H\colon V\to U\times U$ such that points in the zero section ($\{(x,0)\}$ in local coordinates) are mapped to the diagonal $\{(x,x)\}$.
+
+
At each point this is easy: Fix $b\in M$ and let $V'\subset TM$ be a neighbourhood of $i(b)$ coming from the vector bundle structure. Choose a trivialization $V'\to M\times \Rr^n$ and then set $H\colon M\times \Rr^n\to M\times M$, $$H(x,v)=(x,\exp(b,v)).$$By definition of $\exp$ we have $H(b,0)=(b,\exp(b,0))=(b,b)$.
+
+
However, we may now let $b$ vary as $x$ does and define $$H(x,v)=(x,\exp(x,v)).$$As checked before this map maps the zero section to the diagonal. By definition of the expotential map the derivative of $H$ is non-vanishing along the zero section, so by the inverse function theorem there exist a neighbourhood $V\subset TM$ of $M$ on which $H$ is a diffeomorphism.
{{endproof}}
{{endproof}}
We need to find a map $H\colon V\to
</wikitex>
</wikitex>

Latest revision as of 10:16, 30 May 2012

First, You should get familiar with the definition of microbundle.

Exercise 0.1 [Milnor1964, Lemma 2.1]. Let M be a topological manifold. Show that \xi_M : = (M \times M, M, \Delta_M, p_1) is a microbundle.

Proof.

Let M be a topological manifold. Then the composition p_1\circ\Delta_M sends x\mapsto (x,x)\mapsto x, so the first condition in the definition is satisfied.

To prove that the second condition is satisfied we need to use local chart around x/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_vxPwc4. Choose U to be one of the open sets coming from atlas of M and let \phi\colon U\to \mathbb{R}^n be associated chart. The obvious choice for neighbourhood V\subset M\times M is to take U\times U. The first naive candidate for h\colon V=U\times U\to U\times\mathbb{R}^n would be map \id\times \phi. However such h fails to make the following diagram commute

\displaystyle  \xymatrix{ &U\times U\ar[rd]^{p_1}\ar[dd]^h&\\ U\ar[ru]^{\Delta_M}\ar[rd]_{\id\times\{0\}} & & U\\ &U\times \Rr^n\ar[ru]_{p_1}&}

since (u,u) is mapped to (u,\phi(u)) and \phi(u) doesn't necessarily be 0 (well, it depends on our definition of an atlas of a manifold?). We need just a small adjustment: h(u,v)=(u,h(u)-h(v)).

\square


Exercise 0.2 [Milnor1964, Theorem 2.2]. Let M be a (paracompact!) smooth manifold. Show that TM and \xi_M are isomorphic microbundles.

Proof. We have two concurring definitions of micro-tangent bundle. The first is given by the exercise above, the second by forgeting about the vector bundle structure on TM and treating it just as a microbundle (TM, M, \pi,s_0) where M\xrightarrow{s_0} TM is the zero section.

To fix the notation please consult the definition of microbundle isomorphism on page on microbundles .

In our case we have

\displaystyle  \xymatrix{ & V\ar[dd]^H \ar[rd]^{\pi}&\\ M\ar[dr]_{\Delta_M}\ar[ur]^{s_0} & & M\\ & M\times M \ar[ru]_{p_1}&}

where V\subset TM is an open neighbourhood of the zero section.

We need to find a neighbourhood V and a map H\colon V\to U\times U such that points in the zero section (\{(x,0)\} in local coordinates) are mapped to the diagonal \{(x,x)\}.

At each point this is easy: Fix b\in M and let V'\subset TM be a neighbourhood of i(b) coming from the vector bundle structure. Choose a trivialization V'\to M\times \Rr^n and then set H\colon M\times \Rr^n\to M\times M,
\displaystyle H(x,v)=(x,\exp(b,v)).
By definition of \exp we have H(b,0)=(b,\exp(b,0))=(b,b). However, we may now let b vary as x does and define
\displaystyle H(x,v)=(x,\exp(x,v)).
As checked before this map maps the zero section to the diagonal. By definition of the expotential map the derivative of H/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_I73PBF is non-vanishing along the zero section, so by the inverse function theorem there exist a neighbourhood V\subset TM of M on which H is a diffeomorphism.
\square


$ (well, it depends on our definition of an atlas of a manifold?). We need just a small adjustment: $h(u,v)=(u,h(u)-h(v))$. {{endproof}} {{beginthm|Exercise|{{citeD|Milnor1964|Theorem 2.2}}}} Let $M$ be a (paracompact!) smooth manifold. Show that $TM$ and $\xi_M$ are isomorphic microbundles. {{endthm}} {{beginproof}} We have two concurring definitions of micro-tangent bundle. The first is given by the exercise above, the second by forgeting about the vector bundle structure on $TM$ and treating it just as a microbundle $(TM, M, \pi,s_0)$ where $M\xrightarrow{s_0} TM$ is the zero section. To fix the notation please consult the definition of microbundle isomorphism on page on [[Microbundle|microbundles]] . In our case we have $$ \xymatrix{ & V\ar[dd]^H \ar[rd]^{\pi}&\ M\ar[dr]_{\Delta_M}\ar[ur]^{s_0} & & M\ & M\times M \ar[ru]_{p_1}&} $$ where $V\subset TM$ is an open neighbourhood of the zero section. We need to find a neighbourhood $V$ and a map $H\colon V\to U\times U$ such that points in the zero section ($\{(x,0)\}$ in local coordinates) are mapped to the diagonal $\{(x,x)\}$. At each point this is easy: Fix $b\in M$ and let $V'\subset TM$ be a neighbourhood of $i(b)$ coming from the vector bundle structure. Choose a trivialization $V'\to M\times \Rr^n$ and then set $H\colon M\times \Rr^n\to M\times M$, $$H(x,v)=(x,\exp(b,v)).$$By definition of $\exp$ we have $H(b,0)=(b,\exp(b,0))=(b,b)$. However, we may now let $b$ vary as $x$ does and define $$H(x,v)=(x,\exp(x,v)).$$As checked before this map maps the zero section to the diagonal. By definition of the expotential map the derivative of $H$ is non-vanishing along the zero section, so by the inverse function theorem there exist a neighbourhood $V\subset TM$ of $M$ on which $H$ is a diffeomorphism. {{endproof}} M be a topological manifold. Show that \xi_M : = (M \times M, M, \Delta_M, p_1) is a microbundle.

Proof.

Let M be a topological manifold. Then the composition p_1\circ\Delta_M sends x\mapsto (x,x)\mapsto x, so the first condition in the definition is satisfied.

To prove that the second condition is satisfied we need to use local chart around x/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_vxPwc4. Choose U to be one of the open sets coming from atlas of M and let \phi\colon U\to \mathbb{R}^n be associated chart. The obvious choice for neighbourhood V\subset M\times M is to take U\times U. The first naive candidate for h\colon V=U\times U\to U\times\mathbb{R}^n would be map \id\times \phi. However such h fails to make the following diagram commute

\displaystyle  \xymatrix{ &U\times U\ar[rd]^{p_1}\ar[dd]^h&\\ U\ar[ru]^{\Delta_M}\ar[rd]_{\id\times\{0\}} & & U\\ &U\times \Rr^n\ar[ru]_{p_1}&}

since (u,u) is mapped to (u,\phi(u)) and \phi(u) doesn't necessarily be 0 (well, it depends on our definition of an atlas of a manifold?). We need just a small adjustment: h(u,v)=(u,h(u)-h(v)).

\square


Exercise 0.2 [Milnor1964, Theorem 2.2]. Let M be a (paracompact!) smooth manifold. Show that TM and \xi_M are isomorphic microbundles.

Proof. We have two concurring definitions of micro-tangent bundle. The first is given by the exercise above, the second by forgeting about the vector bundle structure on TM and treating it just as a microbundle (TM, M, \pi,s_0) where M\xrightarrow{s_0} TM is the zero section.

To fix the notation please consult the definition of microbundle isomorphism on page on microbundles .

In our case we have

\displaystyle  \xymatrix{ & V\ar[dd]^H \ar[rd]^{\pi}&\\ M\ar[dr]_{\Delta_M}\ar[ur]^{s_0} & & M\\ & M\times M \ar[ru]_{p_1}&}

where V\subset TM is an open neighbourhood of the zero section.

We need to find a neighbourhood V and a map H\colon V\to U\times U such that points in the zero section (\{(x,0)\} in local coordinates) are mapped to the diagonal \{(x,x)\}.

At each point this is easy: Fix b\in M and let V'\subset TM be a neighbourhood of i(b) coming from the vector bundle structure. Choose a trivialization V'\to M\times \Rr^n and then set H\colon M\times \Rr^n\to M\times M,
\displaystyle H(x,v)=(x,\exp(b,v)).
By definition of \exp we have H(b,0)=(b,\exp(b,0))=(b,b). However, we may now let b vary as x does and define
\displaystyle H(x,v)=(x,\exp(x,v)).
As checked before this map maps the zero section to the diagonal. By definition of the expotential map the derivative of H/var/www/vhost/map.mpim-bonn.mpg.de/tmp/AppWikiTex/tex_I73PBF is non-vanishing along the zero section, so by the inverse function theorem there exist a neighbourhood V\subset TM of M on which H is a diffeomorphism.
\square


Retrieved from "http://www.map.mpim-bonn.mpg.de/index.php?title=Talk:Microbundles_(Ex)&oldid=9157"
Personal tools
Namespaces
Variants
Actions
Navigation
Interaction
Toolbox