# Talk:Chain duality III (Ex)

(Difference between revisions)

(Created page with "We check this for objects in $\mathbb A$. Let $\phi:TM\to M$ be an element of $M\otimes_{\mathbb A}M$. Then $T_{M,M}\phi=(e_M\circ T\phi: TM\to T^2M\to M$.") |
|||

Line 1: | Line 1: | ||

+ | <wikitex>; | ||

We check this for objects in $\mathbb A$. | We check this for objects in $\mathbb A$. | ||

Let $\phi:TM\to M$ be an element of $M\otimes_{\mathbb A}M$. | Let $\phi:TM\to M$ be an element of $M\otimes_{\mathbb A}M$. | ||

Then $T_{M,M}\phi=(e_M\circ T\phi: TM\to T^2M\to M$. | Then $T_{M,M}\phi=(e_M\circ T\phi: TM\to T^2M\to M$. | ||

+ | </wikitex> |

## Revision as of 11:14, 1 June 2012

We check this for objects in .

Let be an element of . Then .