Structured chain complexes V (Ex)

From Manifold Atlas
Revision as of 12:19, 25 August 2013 by Tibor Macko (Talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

Let f \colon C \rightarrow D and g \colon D \rightarrow E be chain maps and let j \colon gf \simeq 0 \colon C \rightarrow E be a chain homotopy from~gf to~0. Then the formula

\displaystyle   \Phi_j (y,x) = g(y) + j(x)

gives another chain map \Phi_j \colon \mathcal{C} (f) \rightarrow E making the following diagram commutative

\displaystyle     \xymatrix{C \ar[r]^{f} & D \ar[r]^{e} \ar[dr]_{g} & \mathcal{C}(f) \ar@{-->}[d]^{\Phi_j} \\    & & E    }

Find appropriate j \colon ef \simeq 0 \colon C \rightarrow \mathcal{C} (f) for which we have

\displaystyle  \mathrm{ev}_l (\delta \varphi,\varphi) = \delta\varphi_0  + f \varphi_0 \colon \mathcal{C} (f)^{n+1-\ast} \rightarrow D.

and

\displaystyle  \mathrm{ev}_r (\delta \varphi,\varphi) = \begin{pmatrix} \delta \varphi_0  \\  \varphi_0 f^\ast \end{pmatrix} \colon D^{n+1-\ast} \rightarrow \mathcal{C} (f).

[edit] References

$. Then the formula $$ \Phi_j (y,x) = g(y) + j(x) $$ gives another chain map $\Phi_j \colon \mathcal{C} (f) \rightarrow E$ making the following diagram commutative $$ \xymatrix{C \ar[r]^{f} & D \ar[r]^{e} \ar[dr]_{g} & \mathcal{C}(f) \ar@{-->}[d]^{\Phi_j} \ & & E } $$ Find appropriate $j \colon ef \simeq 0 \colon C \rightarrow \mathcal{C} (f)$ for which we have $$ \mathrm{ev}_l (\delta \varphi,\varphi) = \delta\varphi_0 + f \varphi_0 \colon \mathcal{C} (f)^{n+1-\ast} \rightarrow D. $$ and $$ \mathrm{ev}_r (\delta \varphi,\varphi) = \begin{pmatrix} \delta \varphi_0 \ \varphi_0 f^\ast \end{pmatrix} \colon D^{n+1-\ast} \rightarrow \mathcal{C} (f). $$ == References == {{#RefList:}} [[Category:Exercises]] [[Category:Exercises without solution]]f \colon C \rightarrow D and g \colon D \rightarrow E be chain maps and let j \colon gf \simeq 0 \colon C \rightarrow E be a chain homotopy from~gf to~0. Then the formula

\displaystyle   \Phi_j (y,x) = g(y) + j(x)

gives another chain map \Phi_j \colon \mathcal{C} (f) \rightarrow E making the following diagram commutative

\displaystyle     \xymatrix{C \ar[r]^{f} & D \ar[r]^{e} \ar[dr]_{g} & \mathcal{C}(f) \ar@{-->}[d]^{\Phi_j} \\    & & E    }

Find appropriate j \colon ef \simeq 0 \colon C \rightarrow \mathcal{C} (f) for which we have

\displaystyle  \mathrm{ev}_l (\delta \varphi,\varphi) = \delta\varphi_0  + f \varphi_0 \colon \mathcal{C} (f)^{n+1-\ast} \rightarrow D.

and

\displaystyle  \mathrm{ev}_r (\delta \varphi,\varphi) = \begin{pmatrix} \delta \varphi_0  \\  \varphi_0 f^\ast \end{pmatrix} \colon D^{n+1-\ast} \rightarrow \mathcal{C} (f).

[edit] References

Personal tools
Namespaces
Variants
Actions
Navigation
Interaction
Toolbox