Stable classification of 4-manifolds
Line 35: | Line 35: | ||
== Realization of the invariants == | == Realization of the invariants == | ||
<wikitex>; | <wikitex>; | ||
− | Given the Theorem above one wonders about the realization of the invariants. Partial answers are easy, but in general this is a complicated open question, where the answer is only known for special fundamental groups. In the simply connected case there are only two invariants, the Euler characteristic and the signature. | + | Given the Theorem above one wonders about the realization of the invariants. Partial answers are easy, but in general this is a complicated open question, where the answer is only known for special fundamental groups. In the simply connected case there are only two invariants, the Euler characteristic and the signature. The Euler characteristic of of a simply connected $4$-manifold is $\ge 2$ and it is $2$ if and only if $M$ is a homotopy sphere. Since a homotopy sphere is spinnable it cannot occur in our context. |
Revision as of 16:02, 31 March 2011
The user responsible for this page is Matthias Kreck. No other user may edit this page at present. |
This page has not been refereed. The information given here might be incomplete or provisional. |
Contents |
1 Introduction
In this page we report about the stable classification of closed oriented -manifolds. We will begin with a special class of closed oriented
-manifolds, namely those, where the universal covering is not spinnable.
2 Construction and examples I
We begin with the construction of two classes of manifolds which can be used to give many stable diffeomorphism types of non-spinnable -manifolds. The first is:
The second is a large class of manifolds associated to certain algebraic data.
Let be a finitely presentable group. Then for each element
in
there is a smooth, closed, connected, oriented, non-spinnable manifold
with signature zero, fundamental group
and
. This is proved in several steps by first using the Atiyah-Hirzebruch spectral sequence) and the fact that the oriented bordism groups are zero in degree
,
and
: see Oriented bordism to show that there is a closed, smooth, oriented manifold
together with a map
with
and signature zero. Then by surgeries on
- and
-dimensional spheres one changes
and
in such a way, that
is connected and
is an isomorphism on
(reference). Finally we form the connected sum with
to make sure that
is non-spinnable. This manifold is of course not unique but we will see that it is unique up to stable diffeomorphisms and we abbreviate it by
3 Invariants
The following is a complete list of invariants for the stable classification of closed, smooth oriented -manifolds whose universal covering is not spinnable:
- The Euler characteristic
- The signature
- The fundamanetal group
- The image of the fundamental class
of
.
Here is a classifying map of the universal covering and
is the outer automorphism group which acts on the homology of
.
4 Classification
Theorem 4.1. Let and
be
-dimensional compact smooth manifolds with non-spinnable universal covering. Then
and
are stably diffeomorphic if and only if the invariants above agree.
The proof of this result is an easy consequence of the general stable classification theorem ([Kreck1999], Stable classification of manifolds). Namely, the normal -type is
, see Stable classification of manfifolds. Thus the
-bordism group is
, which by the Atiyah-Hirzebruch spectral sequence is ismorphic to
under the signature and the image of the fundamental class. Now the statement follows from Theorem 3.1 of Stable classification of manifolds.
5 Realization of the invariants
Given the Theorem above one wonders about the realization of the invariants. Partial answers are easy, but in general this is a complicated open question, where the answer is only known for special fundamental groups. In the simply connected case there are only two invariants, the Euler characteristic and the signature. The Euler characteristic of of a simply connected -manifold is
and it is
if and only if
is a homotopy sphere. Since a homotopy sphere is spinnable it cannot occur in our context.
The different stable diffeomorphism classes of manifolds with fundamental group are given by
. Here $k+s + \chi
![\displaystyle \xymatrix{ B \ar[r]^{} \ar[d]^{} & K(\pi, 1) \ar[d]^{\hat w_2} \\ BSO \ar[r]^{w_2} & K(\Zz/2, 2) }](/images/math/d/3/b/d3ba1995973224eb01a13d2df92e832d.png)
6 Further discussion
...
7 References
- [Kreck1999] M. Kreck, Surgery and duality, Ann. of Math. (2) 149 (1999), no.3, 707–754. MR1709301 (2001a:57051) Zbl 0935.57039

2 Construction and examples I
We begin with the construction of two classes of manifolds which can be used to give many stable diffeomorphism types of non-spinnable -manifolds. The first is:
The second is a large class of manifolds associated to certain algebraic data.
Let be a finitely presentable group. Then for each element
in
there is a smooth, closed, connected, oriented, non-spinnable manifold
with signature zero, fundamental group
and
. This is proved in several steps by first using the Atiyah-Hirzebruch spectral sequence) and the fact that the oriented bordism groups are zero in degree
,
and
: see Oriented bordism to show that there is a closed, smooth, oriented manifold
together with a map
with
and signature zero. Then by surgeries on
- and
-dimensional spheres one changes
and
in such a way, that
is connected and
is an isomorphism on
(reference). Finally we form the connected sum with
to make sure that
is non-spinnable. This manifold is of course not unique but we will see that it is unique up to stable diffeomorphisms and we abbreviate it by
3 Invariants
The following is a complete list of invariants for the stable classification of closed, smooth oriented -manifolds whose universal covering is not spinnable:
- The Euler characteristic
- The signature
- The fundamanetal group
- The image of the fundamental class
of
.
Here is a classifying map of the universal covering and
is the outer automorphism group which acts on the homology of
.
4 Classification
Theorem 4.1. Let and
be
-dimensional compact smooth manifolds with non-spinnable universal covering. Then
and
are stably diffeomorphic if and only if the invariants above agree.
The proof of this result is an easy consequence of the general stable classification theorem ([Kreck1999], Stable classification of manifolds). Namely, the normal -type is
, see Stable classification of manfifolds. Thus the
-bordism group is
, which by the Atiyah-Hirzebruch spectral sequence is ismorphic to
under the signature and the image of the fundamental class. Now the statement follows from Theorem 3.1 of Stable classification of manifolds.
5 Realization of the invariants
Given the Theorem above one wonders about the realization of the invariants. Partial answers are easy, but in general this is a complicated open question, where the answer is only known for special fundamental groups. In the simply connected case there are only two invariants, the Euler characteristic and the signature. The Euler characteristic of of a simply connected -manifold is
and it is
if and only if
is a homotopy sphere. Since a homotopy sphere is spinnable it cannot occur in our context.
The different stable diffeomorphism classes of manifolds with fundamental group are given by
. Here $k+s + \chi
![\displaystyle \xymatrix{ B \ar[r]^{} \ar[d]^{} & K(\pi, 1) \ar[d]^{\hat w_2} \\ BSO \ar[r]^{w_2} & K(\Zz/2, 2) }](/images/math/d/3/b/d3ba1995973224eb01a13d2df92e832d.png)
6 Further discussion
...
7 References
- [Kreck1999] M. Kreck, Surgery and duality, Ann. of Math. (2) 149 (1999), no.3, 707–754. MR1709301 (2001a:57051) Zbl 0935.57039

2 Construction and examples I
We begin with the construction of two classes of manifolds which can be used to give many stable diffeomorphism types of non-spinnable -manifolds. The first is:
The second is a large class of manifolds associated to certain algebraic data.
Let be a finitely presentable group. Then for each element
in
there is a smooth, closed, connected, oriented, non-spinnable manifold
with signature zero, fundamental group
and
. This is proved in several steps by first using the Atiyah-Hirzebruch spectral sequence) and the fact that the oriented bordism groups are zero in degree
,
and
: see Oriented bordism to show that there is a closed, smooth, oriented manifold
together with a map
with
and signature zero. Then by surgeries on
- and
-dimensional spheres one changes
and
in such a way, that
is connected and
is an isomorphism on
(reference). Finally we form the connected sum with
to make sure that
is non-spinnable. This manifold is of course not unique but we will see that it is unique up to stable diffeomorphisms and we abbreviate it by
3 Invariants
The following is a complete list of invariants for the stable classification of closed, smooth oriented -manifolds whose universal covering is not spinnable:
- The Euler characteristic
- The signature
- The fundamanetal group
- The image of the fundamental class
of
.
Here is a classifying map of the universal covering and
is the outer automorphism group which acts on the homology of
.
4 Classification
Theorem 4.1. Let and
be
-dimensional compact smooth manifolds with non-spinnable universal covering. Then
and
are stably diffeomorphic if and only if the invariants above agree.
The proof of this result is an easy consequence of the general stable classification theorem ([Kreck1999], Stable classification of manifolds). Namely, the normal -type is
, see Stable classification of manfifolds. Thus the
-bordism group is
, which by the Atiyah-Hirzebruch spectral sequence is ismorphic to
under the signature and the image of the fundamental class. Now the statement follows from Theorem 3.1 of Stable classification of manifolds.
5 Realization of the invariants
Given the Theorem above one wonders about the realization of the invariants. Partial answers are easy, but in general this is a complicated open question, where the answer is only known for special fundamental groups. In the simply connected case there are only two invariants, the Euler characteristic and the signature. The Euler characteristic of of a simply connected -manifold is
and it is
if and only if
is a homotopy sphere. Since a homotopy sphere is spinnable it cannot occur in our context.
The different stable diffeomorphism classes of manifolds with fundamental group are given by
. Here $k+s + \chi
![\displaystyle \xymatrix{ B \ar[r]^{} \ar[d]^{} & K(\pi, 1) \ar[d]^{\hat w_2} \\ BSO \ar[r]^{w_2} & K(\Zz/2, 2) }](/images/math/d/3/b/d3ba1995973224eb01a13d2df92e832d.png)
6 Further discussion
...
7 References
- [Kreck1999] M. Kreck, Surgery and duality, Ann. of Math. (2) 149 (1999), no.3, 707–754. MR1709301 (2001a:57051) Zbl 0935.57039

2 Construction and examples I
We begin with the construction of two classes of manifolds which can be used to give many stable diffeomorphism types of non-spinnable -manifolds. The first is:
The second is a large class of manifolds associated to certain algebraic data.
Let be a finitely presentable group. Then for each element
in
there is a smooth, closed, connected, oriented, non-spinnable manifold
with signature zero, fundamental group
and
. This is proved in several steps by first using the Atiyah-Hirzebruch spectral sequence) and the fact that the oriented bordism groups are zero in degree
,
and
: see Oriented bordism to show that there is a closed, smooth, oriented manifold
together with a map
with
and signature zero. Then by surgeries on
- and
-dimensional spheres one changes
and
in such a way, that
is connected and
is an isomorphism on
(reference). Finally we form the connected sum with
to make sure that
is non-spinnable. This manifold is of course not unique but we will see that it is unique up to stable diffeomorphisms and we abbreviate it by
3 Invariants
The following is a complete list of invariants for the stable classification of closed, smooth oriented -manifolds whose universal covering is not spinnable:
- The Euler characteristic
- The signature
- The fundamanetal group
- The image of the fundamental class
of
.
Here is a classifying map of the universal covering and
is the outer automorphism group which acts on the homology of
.
4 Classification
Theorem 4.1. Let and
be
-dimensional compact smooth manifolds with non-spinnable universal covering. Then
and
are stably diffeomorphic if and only if the invariants above agree.
The proof of this result is an easy consequence of the general stable classification theorem ([Kreck1999], Stable classification of manifolds). Namely, the normal -type is
, see Stable classification of manfifolds. Thus the
-bordism group is
, which by the Atiyah-Hirzebruch spectral sequence is ismorphic to
under the signature and the image of the fundamental class. Now the statement follows from Theorem 3.1 of Stable classification of manifolds.
5 Realization of the invariants
Given the Theorem above one wonders about the realization of the invariants. Partial answers are easy, but in general this is a complicated open question, where the answer is only known for special fundamental groups. In the simply connected case there are only two invariants, the Euler characteristic and the signature. The Euler characteristic of of a simply connected -manifold is
and it is
if and only if
is a homotopy sphere. Since a homotopy sphere is spinnable it cannot occur in our context.
The different stable diffeomorphism classes of manifolds with fundamental group are given by
. Here $k+s + \chi
![\displaystyle \xymatrix{ B \ar[r]^{} \ar[d]^{} & K(\pi, 1) \ar[d]^{\hat w_2} \\ BSO \ar[r]^{w_2} & K(\Zz/2, 2) }](/images/math/d/3/b/d3ba1995973224eb01a13d2df92e832d.png)
6 Further discussion
...
7 References
- [Kreck1999] M. Kreck, Surgery and duality, Ann. of Math. (2) 149 (1999), no.3, 707–754. MR1709301 (2001a:57051) Zbl 0935.57039

2 Construction and examples I
We begin with the construction of two classes of manifolds which can be used to give many stable diffeomorphism types of non-spinnable -manifolds. The first is:
The second is a large class of manifolds associated to certain algebraic data.
Let be a finitely presentable group. Then for each element
in
there is a smooth, closed, connected, oriented, non-spinnable manifold
with signature zero, fundamental group
and
. This is proved in several steps by first using the Atiyah-Hirzebruch spectral sequence) and the fact that the oriented bordism groups are zero in degree
,
and
: see Oriented bordism to show that there is a closed, smooth, oriented manifold
together with a map
with
and signature zero. Then by surgeries on
- and
-dimensional spheres one changes
and
in such a way, that
is connected and
is an isomorphism on
(reference). Finally we form the connected sum with
to make sure that
is non-spinnable. This manifold is of course not unique but we will see that it is unique up to stable diffeomorphisms and we abbreviate it by
3 Invariants
The following is a complete list of invariants for the stable classification of closed, smooth oriented -manifolds whose universal covering is not spinnable:
- The Euler characteristic
- The signature
- The fundamanetal group
- The image of the fundamental class
of
.
Here is a classifying map of the universal covering and
is the outer automorphism group which acts on the homology of
.
4 Classification
Theorem 4.1. Let and
be
-dimensional compact smooth manifolds with non-spinnable universal covering. Then
and
are stably diffeomorphic if and only if the invariants above agree.
The proof of this result is an easy consequence of the general stable classification theorem ([Kreck1999], Stable classification of manifolds). Namely, the normal -type is
, see Stable classification of manfifolds. Thus the
-bordism group is
, which by the Atiyah-Hirzebruch spectral sequence is ismorphic to
under the signature and the image of the fundamental class. Now the statement follows from Theorem 3.1 of Stable classification of manifolds.
5 Realization of the invariants
Given the Theorem above one wonders about the realization of the invariants. Partial answers are easy, but in general this is a complicated open question, where the answer is only known for special fundamental groups. In the simply connected case there are only two invariants, the Euler characteristic and the signature. The Euler characteristic of of a simply connected -manifold is
and it is
if and only if
is a homotopy sphere. Since a homotopy sphere is spinnable it cannot occur in our context.
The different stable diffeomorphism classes of manifolds with fundamental group are given by
. Here $k+s + \chi
![\displaystyle \xymatrix{ B \ar[r]^{} \ar[d]^{} & K(\pi, 1) \ar[d]^{\hat w_2} \\ BSO \ar[r]^{w_2} & K(\Zz/2, 2) }](/images/math/d/3/b/d3ba1995973224eb01a13d2df92e832d.png)
6 Further discussion
...
7 References
- [Kreck1999] M. Kreck, Surgery and duality, Ann. of Math. (2) 149 (1999), no.3, 707–754. MR1709301 (2001a:57051) Zbl 0935.57039