Spin bordism

(Difference between revisions)
Jump to: navigation, search
Line 8: Line 8:
<wikitex>;
<wikitex>;
+
{{cite|Stong1968}}
Preliminary results were by Novikov. The main
Preliminary results were by Novikov. The main
calculation is due to Anderson, Brown, and Peterson
calculation is due to Anderson, Brown, and Peterson

Revision as of 22:44, 26 January 2010

Contents

1 Introduction

The spin bordism groups \Omega_n^{Spin} of manifolds with spin structures are the homotopy groups of the Thom spectrum MSpin.


2 Calculation

[Stong1968] Preliminary results were by Novikov. The main calculation is due to Anderson, Brown, and Peterson [Anderson&Brown&Peterson1966] who showed that all torsion is of order 2, being of two types: that arising by products with a framed S^1 and that which maps monomorphically into unoriented cobordism. \Omega_*^{Spin}/Torsion is the subring of an integral polynomial ring on classes x_{4i} (dimension 4i) consisting of all classes of dimension a multiple of 8 and twice the classes whose dimension is not a multiple of 8.

Characteristic numbers: Cobordism is determined by \Zz_2 cohomology and KO-theory characteristic numbers.

Relation to framed bordism: The image of framed cobordism is 0 except in dimensions 8k+1,8k+2 where it is \Zz_2.

Relation to oriented bordism: MSpin\to MSO is an equivalence after inverting 2. The kernel of the map from spin to oriented bordism is in dimensions 8k + 1 and 8k + 2 only and is the part generated by framed manifolds. It is the ideal generated by the non-trivial class of degree 1.

The image in unoriented cobordism is all classes for which the characteristic numbers divisible by w_1 and w_2 are zero.


3 KO-Characteristic classes

%This should probably get its own page.%

The KO-Pontryagin classes \pi^j are defined by setting \pi^0(L) = 1, \pi^1(L)=L-2, \pi^j(L) = 0 for j \ge 2 for complex line bundles L and then requiring naturality and \pi_s(\xi + \eta) = \pi_s(\xi)\pi_s(\eta) where \pi_s =\sum_j \pi^j s^j . Here \xi and \eta are oriented bundles. In fact, these properties determine \pi^j because the group KO(BSO(m)) injects into K(BT^{[m/2]}) under the complexification of the map which is induced by the restriction to the maximal torus T^{[m/2]} (compare [Anderson&Brown&Peterson1966]). For J=(j_1,\dots,  j_n) we set \pi^J=\pi^{j_1}\dots \pi^{j_n}. Such a class gives a map MSpin\to ko \langle m\rangle.

Theorem [Anderson&Brown&Peterson1966] 3.1. There is a 2-local homotopy equivalence

\displaystyle MSpin \to\bigvee_{n(J)even, \\ 1\not \in J}ko \langle 4n(J)\rangle  \vee \bigvee_{n(J)odd, \\ 1\not \in J}ko \langle 4n(J)+2 \rangle  \vee \bigvee_{i}\Sigma^{|x_i|}H\Zz_2



4 Low dimensions

\Omega_0^{Spin}=\Zz, generated by a point.

\Omega_1^{Spin}=\Zz_2, generated by the circle with the "antiperiodic" spin structure.

\Omega_2^{Spin}=\Zz_2, generated by the square of the generator of the first bordism group.

\Omega_3^{Spin}=0.

\Omega_4^{Spin}=\Zz, generated by the Kummer surface.

\Omega_5^{Spin}=\Omega_6^{Spin}=\Omega_7^{Spin}=0.

\Omega_8^{Spin}=\Zz\oplus \Zz, generated by quaternionic projective space, and 1/4 of the square of the Kummer surface.

5 References

This page has not been refereed. The information given here might be incomplete or provisional.

Personal tools
Namespaces
Variants
Actions
Navigation
Interaction
Toolbox