# Sandbox

 The sandbox is the page where you can experiment with the wiki syntax. Feel free to write nonsense or clear the page whenever you want.
(1)$A = B$$\newcommand{\Z}{\mathbb{Z}} \newcommand{\R}{\mathbb{R}} \newcommand{\C}{\mathbb{C}} \newcommand{\N}{\mathbb{N}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\F}{\mathbb{F}} \newcommand{\bZ}{\mathbb{Z}} \newcommand{\bR}{\mathbb{R}} \newcommand{\bC}{\mathbb{C}} \newcommand{\bH}{\mathbb{H}} \newcommand{\bQ}{\mathbb{Q}} \newcommand{\bF}{\mathbb{F}} \newcommand{\bN}{\mathbb{N}} \DeclareMathOperator\id{id} % identity map \DeclareMathOperator\Sq{Sq} % Steenrod squares \DeclareMathOperator\Homeo{Homeo} % group of homeomorphisms of a topoloical space \DeclareMathOperator\Diff{Diff} % group of diffeomorphisms of a smooth manifold \DeclareMathOperator\SDiff{SDiff} % diffeomorphism under some constraint \DeclareMathOperator\Hom{Hom} % homomrphism group \DeclareMathOperator\End{End} % endomorphism group \DeclareMathOperator\Aut{Aut} % automorphism group \DeclareMathOperator\Inn{Inn} % inner automorphisms \DeclareMathOperator\Out{Out} % outer automorphism group \DeclareMathOperator\vol{vol} % volume \newcommand{\GL}{\text{GL}} % general linear group \newcommand{\SL}{\text{SL}} % special linear group \newcommand{\SO}{\text{SO}} % special orthogonal group \newcommand{\O}{\text{O}} % orthogonal group \newcommand{\SU}{\text{SU}} % special unitary group \newcommand{\Spin}{\text{Spin}} % Spin group \newcommand{\RP}{\Rr\mathrm P} % real projective space \newcommand{\CP}{\Cc\mathrm P} % complex projective space \newcommand{\HP}{\Hh\mathrm P} % quaternionic projective space \newcommand{\Top}{\mathrm{Top}} % topological category \newcommand{\PL}{\mathrm{PL}} % piecewise linear category \newcommand{\Cat}{\mathrm{Cat}} % any category \newcommand{\KS}{\text{KS}} % Kirby-Siebenmann class \newcommand{\Hud}{\text{Hud}} % Hudson torus \newcommand{\Ker}{\text{Ker}} % Kernel \newcommand{\underbar}{\underline} %Classifying Spaces for Families of Subgroups \newcommand{\textup}{\text} \newcommand{\sp}{^}A = B$

1. Frog

$--$$--$

Theorem 0.1 [Penrose&Whitehead&Zeeman1961]. For every compact $m$--dimensional PL-manifold $M$ there exists a PL--embedding $M \hookrightarrow \R^{2m}$.

Remark 0.2. For a good exposition of Theorem 0.1 see also [Rourke&Sanderson1972a, p. 63].

Theorem 0.3 [Whitney1944]. For every closed m--dimensional $C^{\infty}$--manifold $M$ there exists a $C^{\infty}$--embedding $M \hookrightarrow \R^{2m}$.

Remark 0.4. For a more modern exposition see also [Adachi1993, p. 67ff].

Theorem 0.5. We have $f \colon X \to Y$

Reference 0.5

By Theorem

$\alpha$(1.2)

(2)$\alpha$eqtest

Theorem 0.6. Frog

2 \ref{eqtest}

Here is some text leading up to an equation

0.7. $$A = B$$

Here is some more text after the equation to see how it looks.

Here is some text leading up to an equation $$A = B$$ Here is some more text after the equation to see how it looks.

4k 8 12 16 20 24 28 32
order bP4k 22.7 25.31 26.127 29.511 210.2047.691 213.8191 214.16384.3617
k 1 2 3 4 5 6 7 8
Bk 1/6 1/30 1/42 1/30 5/66 691/2730 7/6 3617/510

Dim n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
order Θn 1 1 1 1 1 1 28 2 8 6 992 1 3 2 16256 2 16 16 523264 24
bPn+1 1 1 1 1 1 1 28 1 2 1 992 1 1 1 8128 1 2 1 261632 1
Θn/bPn+1 1 1 1 1 1 1 1 2 2×2 6 1 1 3 2 2 2 2×2×2 8×2 2 24
πnS/J 1 2 1 1 1 2 1 2 2×2 6 1 1 3 2×2 2 2 2×2×2 8×2 2 24
index - 2 - - - 2 - - - - - - - 2 - - - - - -

$$f \colon X \to Y$$

Extension DPL (warning): current configuration allows execution of DPL code from protected pages only.

Just a fest $f \colon A \to B$.

$\Q$

a theorem 0.8.

$\text{Spin}$

by theorem 0.8

1. Amsterdam
2. Rotterdam
3. The Hague

[Mess1990]

$\left( \begin{array}{ll} \alpha & \beta \\ \gamma & \delta \end{array} \right)$

$f = T$

$f : X \to Y$

$$f : X \to Y$$

$\Ker$

$\mathscr{A}$ $\mathscr{B}$

bold italic emphasis

</wikitex>

File:Foliation.png
3-dimensional Reeb foliation

## 1 Tests

[Ranicki1981] [Milnor1956] [Milnor1956, Theorem 1] [Milnor1956] [Milnor1956, Theorem 1] Frog

Proof.

$\square$$\square$

## 2 Section

### 2.1 Subsection

Refert to subsection 2.1

Theorem 2.1. test

Refer to theorem 2.1

## 3 Section

Another [1]; inter-Wiki link.

dfa[2]

1. Test1
2. Test2