Parametric connected sum

(Difference between revisions)
Jump to: navigation, search
(Connected sum)
Line 2: Line 2:
== Introduction ==
== Introduction ==
<wikitex>;
<wikitex>;
Parametric connected sum is an operation on compact connected n-manifolds $M$ and $N$ equipped with codimension 0-embeddings $\phi: T \to M$ and $\psi : T \to N$ of a compact connected manifold $T$. It generalises the usual connected sum operation but is more subtle since the isotopy classes of the embeddings $\phi$ and $\psi$ may be significantly more complicated than the isotopy classes of embeddings of n-discs need for connected sum: these last are determined by (local) orientations.
+
Parametric connected sum is an operation on compact connected n-manifolds $M$ and $N$ equipped with codimension 0-embeddings $\phi: T \to M$ and $\psi : T \to N$ of a compact connected manifold $T$. It generalises the usual [[Connected sum|connected sum]] operation
</wikitex>
+
which is the special case when $T = D^n$ is the $n$-disc.
+
The parametric connected sum operation is more complicated than the usual connected
== Connected sum ==
+
sum operation since the isotopy classes of the embeddings of $T$ into $M$ may be significantly more complicated than the isotopy classes of embeddings of n-discs need for connected sum: these last are determined by (local) orientations.
<wikitex>;
+
Let $M$ be a compact connected n-manifold with base point $m \in \mathrm{int} M$. Recall that that a local orientation for $M$ is a choice of orientation of $TM_m$, the tangent space to $M$ at $m$. We write $-M$ for $M$ with the opposition orientation at $m$. Of course, if $M$ is orientable then a local orientation for $M$ defines an orientation on $M$.
+
+
If $M$ and $N$ are locally oriented n-manifolds then their [[Wikipedia:Connected_sum|connected sum]] is defined by
+
$$ M \sharp N = ((M - m) \cup (N - n))/ \simeq$$
+
where $\simeq$ is defined using the local orientations to identify small balls about $m$ and $n$. The diffeomorphism type of $M \sharp N$ is well-defined: in fact $M \sharp N$ is the outcome of 0-surgery on $M \sqcup N$. The essential point is \cite{Hirsch} which states, for any $M$ and any two compatibly oriented embeddings $f_0: D^n \to M$ and $f_1 : D^n \to M$, that $f_0$ is isotopic to $f_1$.
+
+
If $M$ and $N$ are oriented manifolds the connected sum $M \sharp N$ is a well-defined up to diffeomorphism. Note that orientation matters! The canoical example is
+
$$ \CP^2 \sharp \CP^2 \neq \CP^2 \sharp (-\CP^2).$$
+
The manifolds are not even homotopy equivalent: the first has signature 2 the other signature 0. The following elementary lemma is often useful to remember.
+
+
{{beginthm|Lemma}}
+
Let $M$ and $N$ be locally oriented manifolds such that there is a diffeomoprhism $N \cong -N$, then $M \sharp N \cong M \sharp (-N)$.
+
{{endthm}}
+
</wikitex>
</wikitex>
Line 62: Line 48:
<!-- -->
<!-- -->
[[Category:Theory]]
[[Category:Theory]]
+
[[Category:Definitions]]

Revision as of 18:06, 19 February 2013

This page has not been refereed. The information given here might be incomplete or provisional.

Contents

1 Introduction

Parametric connected sum is an operation on compact connected n-manifolds M and N equipped with codimension 0-embeddings \phi: T \to M and \psi : T \to N of a compact connected manifold T. It generalises the usual connected sum operation which is the special case when T = D^n is the n-disc. The parametric connected sum operation is more complicated than the usual connected sum operation since the isotopy classes of the embeddings of T into M may be significantly more complicated than the isotopy classes of embeddings of n-discs need for connected sum: these last are determined by (local) orientations.

2 Connected sum along k-spheres

We say above that to define connected sum for connected k-manifolds M and N it is sufficient to equip them with an isotopy class of embeddings of the k-disc. Moreover, the disjoint union D^n \sqcup D^n is the unique thickening of S^0. This motivates the following

Defintion 2.1. A manifold with an S^k-thickening, an S^k-thickened manifold for short, is a pair (M, \phi) where M is a compact connected manifold and \phi : S^k \times D^{n-k} \to \mathrm{int}(M) is an embedding.

Defintion 2.2. Let M = (M, \phi) and N = (N, \psi) by S^k-thickened manifolds. Define

\displaystyle  M \sharp_k N = (M - \phi(S^k \times \{ 0 \}) \cup (N - \psi(S^k \times \{ 0 \})/\simeq

where \simeq is defined via the embeddings \phi and \psi.

It is clear that we have the following

Observation 2.3. The diffeomorphism type of M \sharp_k N depends only upon the the isotopy classes of the embeddings \phi and \psi (which of course includes the diffeomorphism types of M and N).

2.1 Applications

The operation of S^k-connected sum was used in [Ajala1984] and [Ajala1987] to describe the set of smooth structures on the product of spheres \Pi_{i=1}^r S^{n_i}. This construction also appears in [Sako1981]. The analogue of such a construction for embeddings is used in [Skopenkov2006] to define, for m\ge 2p+q+3, a group stucture on the set E^m(S^p \times S^q) of (smooth or PL) isotopy classes of embeddings of S^p \times S^q into \Rr^m. In [Skopenkov2007] and [Skopenkov2010] the S^k-connected sum of embeddings was used to estimate the set of embeddings.

3 Parametric connected sum along thickenings

Let B be a stable fibred vector bundle. A foundational theorem of modified surgery is

Theorem 3.1 Stable classification: [Kreck1985], [Kreck1999].

\displaystyle  NSt_{2n}(B) \cong \Omega_{2n}^B.

In particular, NSt_{2n}(B) has the structure of an abelian group. The question of whether there is a geometric definition of this group structure is taken up in [Kreck1985, Chapter 2, pp 26-7] where it is shown how to use parametric connected sum along thickenings to define an addition of stable diffeomorphism classes of closed 2n-B-manifolds.

4 References

Personal tools
Namespaces
Variants
Actions
Navigation
Interaction
Toolbox