Manifold Atlas:Definition of “manifold”

From Manifold Atlas
Revision as of 16:35, 21 September 2009 by Diarmuid Crowley (Talk | contribs)
Jump to: navigation, search

1 Introduction

This page defines the term “manifold” as used in the Manifold Atlas. We assume that all manifolds are of a fixed dimension n.

Definition 1.1.

An n-dimensional manifold
Tex syntax error
is a second countable Hausdorff space for which every point x \in M has a neighbourhood U_x homeomorphic to an open subset of \Rr^n_+ := \{ v \in \Rr^n | v_1 \geq 0 \}.
  • The interior of
    Tex syntax error
    , denoted \mathrm{int}(M), is the subset of points for which U_x is an open subset of Rr^n.
  • The boundary of
    Tex syntax error
    , written \partial M, is the complement of the interior of
    Tex syntax error
    .
  • Tex syntax error
    is called closed if
    Tex syntax error
    is compact and \partial M is empty.
A manifold
Tex syntax error
as above is often called a topological manifold for emphasis or clarity.

Typically, but not necessarly, the word “manifold” will mean "topological manifold with extra structure", be it piecewise-linear, smooth, complex, symplectic, contact, Riemannian, etc. The extra structure will be emphasised or suppressed in notation and vocabulary as is appropriate. We briefly review some common categories of manifolds below.

2 Atlases of charts

We give a unified presentation of the definition of piecewise linear, smooth and complex manifolds. In the complex case, we assume that the dimension is even and that the dimension is even.

Recall that a chart on a topological manifold
Tex syntax error
is a homeomporphism \phi_\alpha : U_\alpha \to V_\alpha from an open subset U_\alpha of
Tex syntax error
to an open subset V_\alpha of \Rr^n_+. The transition function defined by two charts \phi_\alpha and \phi_\beta is the homeomorphism
\displaystyle  \phi_{\alpha, \beta} : \phi_\alpha(U_\alpha \cap U_\beta) \longrightarrow \phi_\beta(U_\alpha \cap U_\beta).
An atlas for
Tex syntax error
is a collection of charts A = \{ (U_\alpha, \phi_\alpha)\} such that the U_\alpha cover
Tex syntax error
.

Let \Cat denote either the piecewise linear, smooth or complex categories where by “smooth" we indicate C^\infty maps. That is we require every \phi_{\alpha, \beta} to be either piecewise linear, smooth of class C^\infty or holomorphic. An atlas is a \Cat Atlas if every transition function defined by the that atlas is a \Cat function. \Cat atlases are compatible if their union again forms a \Cat atlas and by Zorn's Lemma each \Cat atlas defines a unique maximal \Cat atlas.

Definition 2.1. A \Cat-manifold (M, A) is a manifold
Tex syntax error
together with a maximal \Cat atlas A. A \Cat-isomorphism (M, A) \cong (N, B) is a homeomorphism f: M \cong N which is a \Cat morphism when viewed in every pair of charts in A and B.


3 Riemannian Manifolds

A Riemannian metric g on a smooth manifold
Tex syntax error
is a smooth family of scalar products
\displaystyle  g_x : T_xM \times T_xM \longmapsto \Rr
defined on the tangent spaces T_xM for each x in
Tex syntax error
. This means that for each pair of smooth vector fields v_1 and v_2 on
Tex syntax error
the map
\displaystyle  M \to \Rr, ~~~ x \longmapsto g_x(v_1(x),v_2(x))

is smooth.

Definition 3.1.

A Riemannian manifold (M, g) is a smooth manifold
Tex syntax error
together with a Riemannian metric g.

An isometry between Riemannian manifolds is a diffeomorphism whose differential preserves the metric g.


Personal tools
Variants
Actions
Navigation
Interaction
Toolbox