Manifold Atlas:Definition of “manifold”

(Difference between revisions)
Jump to: navigation, search
(Atlases of charts)
Line 25: Line 25:
An atlas for $M$ is a collection of charts $A = \{ (U_\alpha, \phi_\alpha)\}$ such that the $U_\alpha$ cover $M$.
An atlas for $M$ is a collection of charts $A = \{ (U_\alpha, \phi_\alpha)\}$ such that the $U_\alpha$ cover $M$.
Let $\Cat$ denote either the piecewise linear, smooth or complex categories where by “smooth" we indicate $C^\infty$ maps. That is we require the every $\phi_{\alpha, \beta}$ to be either [[Wikipedia:Piecewise_linear_function#Notation|piecewise linear]], [[Wikipedia:Smooth_function#Differentiability_classes_in_several_variables|smooth of class $C^\infty$]] or [[Wikipedia:Holomorphic_function|homolorphic]]. An atlas is a $\Cat$ Atlas if every transition function defined by the that atlas is a $\Cat$ function. $\Cat$ atlases are compatible if their union again forms a $\Cat$ atlas and by [[Wikipedia:Zorn's_lemma|Zorn's Lemma]] each $\Cat$ atlas defines a unique maximal $\Cat$ atlas.
+
Let $\Cat$ denote either the piecewise linear, smooth or complex categories where by “smooth" we indicate $C^\infty$ maps. That is we require the every $\phi_{\alpha, \beta}$ to be either [[Wikipedia:Piecewise_linear_function#Notation|piecewise linear]], [[Wikipedia:Smooth_function#Differentiability_classes_in_several_variables|smooth of class $C^\infty$]] or [[Wikipedia:Holomorphic_function|holomorphic]]. An atlas is a $\Cat$ Atlas if every transition function defined by the that atlas is a $\Cat$ function. $\Cat$ atlases are compatible if their union again forms a $\Cat$ atlas and by [[Wikipedia:Zorn's_lemma|Zorn's Lemma]] each $\Cat$ atlas defines a unique maximal $\Cat$ atlas.
{{beginthm|Definition}} A $\Cat$-manifold $(M, A)$ is a manifold $M$ together with a maximal $\Cat$ atlas $A$.
{{beginthm|Definition}} A $\Cat$-manifold $(M, A)$ is a manifold $M$ together with a maximal $\Cat$ atlas $A$.

Revision as of 12:05, 17 September 2009

1 Introduction

This page defines the term “manifold” as used in the Manifold Atlas. We assume that all manifolds are of a fixed dimension n.

Definition 1.1. An n-dimensional manifold M is a second countable Hausdorff space for which every point x \in M has a neighbourhood U_x homeomorphic to an open subset of \Rr^n_+ := \{ v \in \Rr^n | v_1 \geq 0 \}.

  • The interior of M, denoted \mathrm{int}(M), is the subset of points for which U_x \subset \Rr^n.
  • The boundary of M, written \partial M, is the complement of the interior of M.
  • M is called closed if M is compact and \partial M is empty.

A manifold M as above is often called a topological manifold for emphasis or clarity. Typically, but not necessarly, the word “manifold” will mean "topological manifold with extra structure", be it piecewise-linear, smooth, complex, symplectic, contact, Riemannian, etc. The extra structure will be emphasised or suppressed in notation and vocabulary as is appropriate. We briefly review some common categories of manifolds below.

2 Atlases of charts

We give a unified presentation of piecewise linear, smooth and complex manifolds. Recall that a chart on a topological manifold M is a homeomporphism \phi_\alpha : U_\alpha \to V_\alpha from an open subset U_\alpha of M to an open subset V_\alpha of \Rr^n_+. The transition function defined by two charts \phi_\alpha and \phi_\beta is the homeomorphism

\displaystyle  \phi_{\alpha, \beta} : \phi_\alpha(U_\alpha \cap U_\beta) \longrightarrow \phi_\beta(U_\alpha \cap U_\beta).

An atlas for M is a collection of charts A = \{ (U_\alpha, \phi_\alpha)\} such that the U_\alpha cover M.

Let \Cat denote either the piecewise linear, smooth or complex categories where by “smooth" we indicate
Tex syntax error
maps. That is we require the every \phi_{\alpha, \beta} to be either piecewise linear, smooth of class
Tex syntax error
or holomorphic. An atlas is a \Cat Atlas if every transition function defined by the that atlas is a \Cat function. \Cat atlases are compatible if their union again forms a \Cat atlas and by Zorn's Lemma each \Cat atlas defines a unique maximal \Cat atlas.

Definition 2.1. A \Cat-manifold (M, A) is a manifold M together with a maximal \Cat atlas A.

A \Cat-isomorphism (M, A) \cong (N, B) is a homeomorphism f: M \cong N which is a \Cat morphism when viewed in every pair of charts in A and B.
Personal tools
Variants
Actions
Navigation
Interaction
Toolbox