Knotted tori

(Difference between revisions)
Jump to: navigation, search
(Classification)
(Classification)
Line 102: Line 102:
For $m\ge2p+q+2$ we have $\pi_p(V_{m-p,q+1})=0$, so part (c) reduces to part (b) and the PL case of part (a).
For $m\ge2p+q+2$ we have $\pi_p(V_{m-p,q+1})=0$, so part (c) reduces to part (b) and the PL case of part (a).
{{beginthm|Theorem|\cite{Skopenkov2015a}}}\label{t:cornum}
+
{{beginthm|Theorem|\cite[Corollary 1.5.bd]{Skopenkov2015a}}}\label{t:cornum}
Assume that $m\ge 2p+q+3$.
Assume that $m\ge 2p+q+3$.
(a) If $2m\ge p+3q+4$, then $E^m_\#(S^p\times S^q)$ and $\pi_q(V_{m-q,p+1})$ have isomorphic subgroups with isomorphic quotients.
+
(a) If $2m\ge p+3q+4$, then $KT^m_{p,q,\#}$ and $\pi_q(V_{m-q,p+1})$ have isomorphic subgroups with isomorphic quotients.
(b) If $2m\ge 3q+4$, then $E^m_\#(S^p\times S^q)$ has a subgroup isomorphic to $\pi_{p+2q+2-m}(V_{M+m-q-1,M})$ ($M$ large),
+
(b) If $2m\ge 3q+4$, then $KT^m_{p,q,\#}$ has a subgroup isomorphic to $\pi_{p+2q+2-m}(V_{M+m-q-1,M})$ ($M$ large),
whose quotient and $\pi_q(V_{m-q,p+1})$ have isomorphic subgroups with isomorphic quotients.
whose quotient and $\pi_q(V_{m-q,p+1})$ have isomorphic subgroups with isomorphic quotients.
{{endthm}}
{{endthm}}
Line 116: Line 116:
$p$-framings' or `$D^p$-parametric connected sum'. Define $E^m_U(S^q\sqcup S^n) \subset E^m_D(S^q\sqcup S^n)$ to be the subgroup of links all whose components are unknotted. Let $\lambda=\lambda^m_{q,n}:E^m_D(S^q\sqcup S^n)\to\pi_q(S^{m-n-1})$ be the [[High_codimension_links#The_linking_coefficient|linking coefficient]]. Denote $K^m_{q,n}:=\ker\lambda\cap E^m_U(S^q\sqcup S^n)$.
$p$-framings' or `$D^p$-parametric connected sum'. Define $E^m_U(S^q\sqcup S^n) \subset E^m_D(S^q\sqcup S^n)$ to be the subgroup of links all whose components are unknotted. Let $\lambda=\lambda^m_{q,n}:E^m_D(S^q\sqcup S^n)\to\pi_q(S^{m-n-1})$ be the [[High_codimension_links#The_linking_coefficient|linking coefficient]]. Denote $K^m_{q,n}:=\ker\lambda\cap E^m_U(S^q\sqcup S^n)$.
{{beginthm|Conjecture}}\label{t:conj}
+
{{beginthm|Conjecture}}\label{t:conj} (a) If $2m\ge p+3q+4$, then $\tau\oplus_i\#:\pi_q(V_{m-q,p+1})\oplus E^m_D(S^{p+q})\to KT^m_{p,q,D}$ is an
For $m\ge2p+q+3$
+
isomorphism.
+
+
(b) For $m\ge2p+q+3$
$$KT^m_{p,q}\cong E^m_D(D^{p+1}\times S^q)\oplus K^m_{q,p+q}\oplus E^m_D(S^{p+q}).$$
$$KT^m_{p,q}\cong E^m_D(D^{p+1}\times S^q)\oplus K^m_{q,p+q}\oplus E^m_D(S^{p+q}).$$
{{endthm}}
{{endthm}}
Line 125: Line 127:
Denote by $TG$ the torsion subgroup of an abelian group $G$.
Denote by $TG$ the torsion subgroup of an abelian group $G$.
{{beginthm|Theorem|\cite[Corollary 1.7]{Skopenkov2015}, \cite{Skopenkov2015a}}}\label{t:cornum}
+
{{beginthm|Theorem|\cite[Corollary 1.7]{Skopenkov2015}, \cite[Corollary 1.4]{Skopenkov2015a}}}\label{t:cornum}
Assume that $m\ge 2p+q+3$.
Assume that $m\ge 2p+q+3$.

Revision as of 10:11, 12 April 2019

This page has not been refereed. The information given here might be incomplete or provisional.

Contents

1 Introduction

Many interesting examples of embeddings are embeddings S^p\times S^q\to\Rr^m, i.e. knotted tori. See Hudson tori, [Alexander1924], [Milgram&Rees1971], [Kosinski1961], [Hudson1963], [Wall1965], [Tindell1969], [Boechat&Haefliger1970], [Boechat1971], [Milgram&Rees1971], [Lucas&Saeki2002], [Skopenkov2002]. A classification of knotted tori is a natural next step (after the link theory [Haefliger1966a] and the classification of embeddings of highly-connected manifolds) towards classification of embeddings of arbitrary manifolds. Since the general Knotting Problem is very hard, it is very interesting to solve it for the important particular case of knotted tori. Recent classification results for knotted tori [Skopenkov2006a], [Cencelj&Repovš&Skopenkov2007], [Cencelj&Repovš&Skopenkov2008], [Skopenkov2015], [Skopenkov2015a] give some insight or even precise information concerning arbitrary manifolds (cf. [Skopenkov2007], [Skopenkov2010], [Skopenkov2014]) and reveals new interesting relations to algebraic topology.

For a general introduction to embeddings as well as the notation and conventions used on this page, we refer to [Skopenkov2016c, \S1, \S3]. We assume that p\le q. Denote

\displaystyle KT^m_{p,q,CAT}:=E^m_{CAT}(S^p\times S^q).

2 Examples

An S^p-parametric connected sum group structure on KT^m_{p,q} is constructed for m\ge2p+q+3 in [Skopenkov2006], [Skopenkov2015a].

One of the first examples were Hudson tori.

Let us construct a map

\displaystyle \tau:\pi_q(V_{m-q,p+1})\to KT^m_{p,q}.

Recall that \pi_q(V_{m-q,p+1}) is isomorphic to the group of smooth maps S^q\to V_{m-q,p+1} up to smooth homotopy. The latter maps can be considered as smooth maps \varphi:S^q\times S^p\to\partial D^{m-q}. Define the smooth embedding \tau(\varphi) as the composition

Tex syntax error
Here
Tex syntax error
is the projection onto the second factor and \subset is the standard inclusion.

Clearly, \tau is well-defined and, for m\ge2p+q+3, is a homomorphism.

Define the `embedded connected sum' or `local knotting' map

Tex syntax error
Clearly,
Tex syntax error
is well-defined and, for m\ge2p+q+3, is a homomorphism.

See construction of another map in [Skopenkov2015, \S3, definition of \sigma^*].

3 Reduction to classification modulo knots

Let KT^m_{p,q,\#} be the quotient set of KT^m_{p,q,D} by the embedded connected sum action, i.e.
Tex syntax error
. Let q_\#:KT^m_{p,q,D}\to KT^m_{p,q,\#} be the quotient map.

For m\ge2p+q+3 a group structure on KT^m_{p,q,\#} is well-defined by q_{\#}f+q_{\#}f':=q_{\#}(f+f'), f,f'\in KT^m_{p,q,D}.

For m\ge2p+q+3 the map \overline{\sigma}:KT^m_{p,q,D}\to E^m(S^{p+q}) constructed by `embedded surgery of S^p\times*' is well-defined [Skopenkov2015a, \S3.3]. Clearly,
Tex syntax error
.

The following result reduces description of KT^m_{p,q,D} to description of E^m_D(S^{p+q}) and of KT^m_{p,q,\#}, cf. [Schmidt1971], [Crowley&Skopenkov2008, end of \S1].

Lemma 3.1 [Skopenkov2015a, Smoothing Lemma 1.1]. For m\ge2p+q+3 the map

\displaystyle q_\#\oplus\overline{\sigma}:KT^m_{p,q,D}\to KT^m_{p,q,\#}\oplus E^m_D(S^{p+q})
is an isomorphism.

4 Classification

From the Haefliger-Zeeman Isotopy Theorem it follows that E^m(S^p\times S^q)=0 for p\le q and m\ge p+2q+2, provided that m\ge p+q+3 or 2m\ge3(p+q)+4 in the PL or smooth category, respectively. The dimension restriction in this result is sharp by the example of Hudson tori.

We have the following table for 2m\ge3q+6 and for 2m\ge3q+7, for the PL and smooth categories, respectively.

\displaystyle \begin{array}{c|c|c|c|c|c|c|c|c} m                         &\ge2q+3 &2q+2 &2q+1      &2q &2q-1     &2q-2&2q-3\\ \hline KT^m_{1,q},\ q\text{ even}&0       &\Z   &2         &2^2&2^2      &24  &0\\ \hline KT^m_{1,q},\ q\text{ odd} &0       &2    &\Z\oplus2 &4  &2\oplus24&2   &0 \end{array}

Here n is short for \Z_n. The table follows from the theorems below.

We also have |KT^{10}_{1,5}|=4 and KT^{11}_{1,6}\cong\Z_2\oplus\Z\oplus E^{11}_D(S^7), of which E^{11}_D(S^7) is rank one infinite [Skopenkov2015a].

There is a finiteness criterion for KT^m_{D,p,q} when m\ge2p+q+3 [Skopenkov2015, Theorem 1.4]. The formulation is not so short but effective. This criterion is a corollary of Theorem 4.5 below.

Theorem 4.1. There are isomorphisms, or, for p\in\{q,q-1\}, 1-1 correspondences

\displaystyle KT^{p+2q+1}_{p,q,PL}\to\left\{\begin{array}{cc} \Zz_{\varepsilon(q)} & \quad 1\le p<q \\ \Zz_{\varepsilon(q)}\oplus\Zz_{\varepsilon(q)}&\quad 2\le p=q\end{array}\right. \qquad\text{and} \qquad KT^{p+2q+1}_{p,q,D}\to\Zz_{\varepsilon(q)}\quad\text{for}\quad 1\le p\le q-2.

The isomorphisms and 1-1 correspondences are given by the Whitney invariant [Skopenkov2016e].

We have 2l-1+2\cdot2l+1=6l; a description of KT^{6l}_{2l-1,2l,D} is given in [Skopenkov2016e, end of \S6.3].

Theorem 4.1 can be generalized as follows.

Theorem 4.2. (a) If m\ge2p+q+3 and 2m\ge3q+2p+4, then

\displaystyle \tau:\pi_q(V_{m-q,p+1})\to KT^m_{p,q,PL}\quad\text{and}\quad \tau\oplus_i\#:\pi_q(V_{m-q,p+1})\oplus E^m_D(S^{p+q})\to KT^m_{p,q,D}

are isomorphisms.

(b) If q\le2p, then

\displaystyle \tau:\pi_q(V_{2p+2,p+1})\to KT^{2p+q+2}_{p,q,PL}
is a 1-1 correspondence.

(c) If 2m\ge3q+2p+4, then there is a 1-1 correspondence

\displaystyle KT^m_{p,q,PL}\to\pi_q(V_{m-q,p+1})\oplus\pi_p(V_{m-p,q+1}).

This follows for m\ge 2q+3 from the Becker-Glover Theorem 5.3. For the general case see [Skopenkov2002, Corollary 1.5.a]. The 1-1 correspondence is constructed using `the Haefliger-Wu invariant' involving configuration space of distinct pairs. For m\ge2p+q+3 there is an alternative direct proof of (a) [Skopenkov2006], [Skopenkov2015a], but for m\le2p+q+2 no proof of Theorem 4.2.(b)(c) without referring to `the Haefliger-Wu invariant' is known.

For m\ge2p+q+2 we have \pi_p(V_{m-p,q+1})=0, so part (c) reduces to part (b) and the PL case of part (a).

Theorem 4.3 [Skopenkov2015a, Corollary 1.5.bd]. Assume that m\ge 2p+q+3.

(a) If 2m\ge p+3q+4, then KT^m_{p,q,\#} and \pi_q(V_{m-q,p+1}) have isomorphic subgroups with isomorphic quotients.

(b) If 2m\ge 3q+4, then KT^m_{p,q,\#} has a subgroup isomorphic to \pi_{p+2q+2-m}(V_{M+m-q-1,M}) (M large), whose quotient and \pi_q(V_{m-q,p+1}) have isomorphic subgroups with isomorphic quotients.

The following conjecture and results reduce description of KT^m_{p,q,D} to description of objects which are easier to calculate, at least in some cases, see [Skopenkov2015a, \S1.3] for methods of their calculations.

Abelian group structures on E^m(D^p\times S^q) for m\ge q+3 is defined analogously to the well-known case p=0. The sum operation on E^m(D^p\times S^q) is `connected sum of q-spheres together with normal p-framings' or `D^p-parametric connected sum'. Define E^m_U(S^q\sqcup S^n) \subset E^m_D(S^q\sqcup S^n) to be the subgroup of links all whose components are unknotted. Let \lambda=\lambda^m_{q,n}:E^m_D(S^q\sqcup S^n)\to\pi_q(S^{m-n-1}) be the linking coefficient. Denote K^m_{q,n}:=\ker\lambda\cap E^m_U(S^q\sqcup S^n).

Conjecture 4.4. (a) If 2m\ge p+3q+4, then \tau\oplus_i\#:\pi_q(V_{m-q,p+1})\oplus E^m_D(S^{p+q})\to KT^m_{p,q,D} is an isomorphism.

(b) For m\ge2p+q+3

\displaystyle KT^m_{p,q}\cong E^m_D(D^{p+1}\times S^q)\oplus K^m_{q,p+q}\oplus E^m_D(S^{p+q}).

For a discussion see [Skopenkov2015a, Remark 1.9].

Denote by TG the torsion subgroup of an abelian group G.

Theorem 4.5 [Skopenkov2015, Corollary 1.7], [Skopenkov2015a, Corollary 1.4]. Assume that m\ge 2p+q+3.

(a) KT^m_{D,p,q}\otimes\Q\cong[\pi_q(V_{m-q,p+1})\oplus E^m_D(S^q)\oplus K^m_{q,p+q}\oplus E^m_D(S^{p+q})]\otimes\Q.

(b) |KT^m_{D,p,q}|=|E^m_D(D^{p+1}\times S^q)|\cdot|K^m_{q,p+q}|\cdot|E^m_D(S^{p+q})| (more precisely, whenever one part is finite, the other is finite and they are equal).

(c) |TKT^m_{D,p,q}|=|TE^m_D(D^{p+1}\times S^q)|\cdot|TK^m_{q,p+q}|\cdot|TE^m_D(S^{p+q})|, unless m=6k+p and q=4k-1 for some k.

The above results were obtained using more `theoretical' results [Skopenkov2015, Theorem 1.6], [Skopenkov2015a, Theorem 1.2], see also [Cencelj&Repovš&Skopenkov2008, Theorem 2.1].

5 References

, $\S]{Skopenkov2016c}. We assume that $p\le q$. Denote $$KT^m_{p,q,CAT}:=E^m_{CAT}(S^p\times S^q).$$ == Examples == ; An [[Parametric_connected_sum#Applications|$S^p$-parametric connected sum]] group structure on $KT^m_{p,q}$ is constructed for $m\ge2p+q+3$ in \cite{Skopenkov2006}, \cite{Skopenkov2015a}. One of the first examples were [[Embeddings just below the stable range: classification#Hudson_tori|Hudson tori]]. Let us construct a map $$\tau:\pi_q(V_{m-q,p+1})\to KT^m_{p,q}.$$ Recall that $\pi_q(V_{m-q,p+1})$ is isomorphic to the group of smooth maps $S^q\to V_{m-q,p+1}$ up to smooth homotopy. The latter maps can be considered as smooth maps $\varphi:S^q\times S^p\to\partial D^{m-q}$. Define the smooth embedding $\tau(\varphi)$ as the composition $$S^p\times S^q\overset{\varphi\times{\rm pr}_2}\to\partial D^{m-q}\times S^q\overset{\subset}\to D^{m-q}\times S^q\overset{{\rm i}_{m,q}}\to\Rr^m.$$ Here ${\rm pr}_2$ is the projection onto the second factor and $\subset$ is the standard inclusion. Clearly, $\tau$ is well-defined and, for $m\ge2p+q+3$, is a homomorphism. Define the `embedded connected sum' or `local knotting' map $$\phantom{}_{\rm i}\#:E^m_D(S^{p+q})\to KT^m_{p,q,D}\quad\text{by}\quad \phantom{}_{\rm i}\#(g):=0\#g=[{\rm i}_{m,q}]\#g.$$ Clearly, $\phantom{}_{\rm i}\#$ is well-defined and, for $m\ge2p+q+3$, is a homomorphism. See construction of another map in \cite[$\S, definition of $\sigma^*$]{Skopenkov2015}. == Reduction to classification modulo knots == ; Let $KT^m_{p,q,\#}$ be the quotient set of $KT^m_{p,q,D}$ by the embedded connected sum action, i.e. $KT^m_{p,q,\#}:=KT^m_{p,q,D}/\phantom{}_{\rm i}\#(E^m_D(S^{p+q}))$. Let $q_\#:KT^m_{p,q,D}\to KT^m_{p,q,\#}$ be the quotient map. For $m\ge2p+q+3$ a group structure on $KT^m_{p,q,\#}$ is well-defined by $q_{\#}f+q_{\#}f':=q_{\#}(f+f')$, $f,f'\in KT^m_{p,q,D}$. For $m\ge2p+q+3$ the map $\overline{\sigma}:KT^m_{p,q,D}\to E^m(S^{p+q})$ constructed by `embedded surgery of $S^p\times*$' is well-defined \cite[$\S.3]{Skopenkov2015a}. Clearly, $\overline{\sigma}\circ\phantom{}_{\rm i}\#={\rm id}$. The following result reduces description of $KT^m_{p,q,D}$ to description of $E^m_D(S^{p+q})$ and of $KT^m_{p,q,\#}$, cf. \cite{Schmidt1971}, \cite[end of $\SS^p\times S^q\to\Rr^m, i.e. knotted tori. See Hudson tori, [Alexander1924], [Milgram&Rees1971], [Kosinski1961], [Hudson1963], [Wall1965], [Tindell1969], [Boechat&Haefliger1970], [Boechat1971], [Milgram&Rees1971], [Lucas&Saeki2002], [Skopenkov2002]. A classification of knotted tori is a natural next step (after the link theory [Haefliger1966a] and the classification of embeddings of highly-connected manifolds) towards classification of embeddings of arbitrary manifolds. Since the general Knotting Problem is very hard, it is very interesting to solve it for the important particular case of knotted tori. Recent classification results for knotted tori [Skopenkov2006a], [Cencelj&Repovš&Skopenkov2007], [Cencelj&Repovš&Skopenkov2008], [Skopenkov2015], [Skopenkov2015a] give some insight or even precise information concerning arbitrary manifolds (cf. [Skopenkov2007], [Skopenkov2010], [Skopenkov2014]) and reveals new interesting relations to algebraic topology.

For a general introduction to embeddings as well as the notation and conventions used on this page, we refer to [Skopenkov2016c, \S1, \S3]. We assume that p\le q. Denote

\displaystyle KT^m_{p,q,CAT}:=E^m_{CAT}(S^p\times S^q).

2 Examples

An S^p-parametric connected sum group structure on KT^m_{p,q} is constructed for m\ge2p+q+3 in [Skopenkov2006], [Skopenkov2015a].

One of the first examples were Hudson tori.

Let us construct a map

\displaystyle \tau:\pi_q(V_{m-q,p+1})\to KT^m_{p,q}.

Recall that \pi_q(V_{m-q,p+1}) is isomorphic to the group of smooth maps S^q\to V_{m-q,p+1} up to smooth homotopy. The latter maps can be considered as smooth maps \varphi:S^q\times S^p\to\partial D^{m-q}. Define the smooth embedding \tau(\varphi) as the composition

Tex syntax error
Here
Tex syntax error
is the projection onto the second factor and \subset is the standard inclusion.

Clearly, \tau is well-defined and, for m\ge2p+q+3, is a homomorphism.

Define the `embedded connected sum' or `local knotting' map

Tex syntax error
Clearly,
Tex syntax error
is well-defined and, for m\ge2p+q+3, is a homomorphism.

See construction of another map in [Skopenkov2015, \S3, definition of \sigma^*].

3 Reduction to classification modulo knots

Let KT^m_{p,q,\#} be the quotient set of KT^m_{p,q,D} by the embedded connected sum action, i.e.
Tex syntax error
. Let q_\#:KT^m_{p,q,D}\to KT^m_{p,q,\#} be the quotient map.

For m\ge2p+q+3 a group structure on KT^m_{p,q,\#} is well-defined by q_{\#}f+q_{\#}f':=q_{\#}(f+f'), f,f'\in KT^m_{p,q,D}.

For m\ge2p+q+3 the map \overline{\sigma}:KT^m_{p,q,D}\to E^m(S^{p+q}) constructed by `embedded surgery of S^p\times*' is well-defined [Skopenkov2015a, \S3.3]. Clearly,
Tex syntax error
.

The following result reduces description of KT^m_{p,q,D} to description of E^m_D(S^{p+q}) and of KT^m_{p,q,\#}, cf. [Schmidt1971], [Crowley&Skopenkov2008, end of \S1].

Lemma 3.1 [Skopenkov2015a, Smoothing Lemma 1.1]. For m\ge2p+q+3 the map

\displaystyle q_\#\oplus\overline{\sigma}:KT^m_{p,q,D}\to KT^m_{p,q,\#}\oplus E^m_D(S^{p+q})
is an isomorphism.

4 Classification

From the Haefliger-Zeeman Isotopy Theorem it follows that E^m(S^p\times S^q)=0 for p\le q and m\ge p+2q+2, provided that m\ge p+q+3 or 2m\ge3(p+q)+4 in the PL or smooth category, respectively. The dimension restriction in this result is sharp by the example of Hudson tori.

We have the following table for 2m\ge3q+6 and for 2m\ge3q+7, for the PL and smooth categories, respectively.

\displaystyle \begin{array}{c|c|c|c|c|c|c|c|c} m                         &\ge2q+3 &2q+2 &2q+1      &2q &2q-1     &2q-2&2q-3\\ \hline KT^m_{1,q},\ q\text{ even}&0       &\Z   &2         &2^2&2^2      &24  &0\\ \hline KT^m_{1,q},\ q\text{ odd} &0       &2    &\Z\oplus2 &4  &2\oplus24&2   &0 \end{array}

Here n is short for \Z_n. The table follows from the theorems below.

We also have |KT^{10}_{1,5}|=4 and KT^{11}_{1,6}\cong\Z_2\oplus\Z\oplus E^{11}_D(S^7), of which E^{11}_D(S^7) is rank one infinite [Skopenkov2015a].

There is a finiteness criterion for KT^m_{D,p,q} when m\ge2p+q+3 [Skopenkov2015, Theorem 1.4]. The formulation is not so short but effective. This criterion is a corollary of Theorem 4.5 below.

Theorem 4.1. There are isomorphisms, or, for p\in\{q,q-1\}, 1-1 correspondences

\displaystyle KT^{p+2q+1}_{p,q,PL}\to\left\{\begin{array}{cc} \Zz_{\varepsilon(q)} & \quad 1\le p<q \\ \Zz_{\varepsilon(q)}\oplus\Zz_{\varepsilon(q)}&\quad 2\le p=q\end{array}\right. \qquad\text{and} \qquad KT^{p+2q+1}_{p,q,D}\to\Zz_{\varepsilon(q)}\quad\text{for}\quad 1\le p\le q-2.

The isomorphisms and 1-1 correspondences are given by the Whitney invariant [Skopenkov2016e].

We have 2l-1+2\cdot2l+1=6l; a description of KT^{6l}_{2l-1,2l,D} is given in [Skopenkov2016e, end of \S6.3].

Theorem 4.1 can be generalized as follows.

Theorem 4.2. (a) If m\ge2p+q+3 and 2m\ge3q+2p+4, then

\displaystyle \tau:\pi_q(V_{m-q,p+1})\to KT^m_{p,q,PL}\quad\text{and}\quad \tau\oplus_i\#:\pi_q(V_{m-q,p+1})\oplus E^m_D(S^{p+q})\to KT^m_{p,q,D}

are isomorphisms.

(b) If q\le2p, then

\displaystyle \tau:\pi_q(V_{2p+2,p+1})\to KT^{2p+q+2}_{p,q,PL}
is a 1-1 correspondence.

(c) If 2m\ge3q+2p+4, then there is a 1-1 correspondence

\displaystyle KT^m_{p,q,PL}\to\pi_q(V_{m-q,p+1})\oplus\pi_p(V_{m-p,q+1}).

This follows for m\ge 2q+3 from the Becker-Glover Theorem 5.3. For the general case see [Skopenkov2002, Corollary 1.5.a]. The 1-1 correspondence is constructed using `the Haefliger-Wu invariant' involving configuration space of distinct pairs. For m\ge2p+q+3 there is an alternative direct proof of (a) [Skopenkov2006], [Skopenkov2015a], but for m\le2p+q+2 no proof of Theorem 4.2.(b)(c) without referring to `the Haefliger-Wu invariant' is known.

For m\ge2p+q+2 we have \pi_p(V_{m-p,q+1})=0, so part (c) reduces to part (b) and the PL case of part (a).

Theorem 4.3 [Skopenkov2015a, Corollary 1.5.bd]. Assume that m\ge 2p+q+3.

(a) If 2m\ge p+3q+4, then KT^m_{p,q,\#} and \pi_q(V_{m-q,p+1}) have isomorphic subgroups with isomorphic quotients.

(b) If 2m\ge 3q+4, then KT^m_{p,q,\#} has a subgroup isomorphic to \pi_{p+2q+2-m}(V_{M+m-q-1,M}) (M large), whose quotient and \pi_q(V_{m-q,p+1}) have isomorphic subgroups with isomorphic quotients.

The following conjecture and results reduce description of KT^m_{p,q,D} to description of objects which are easier to calculate, at least in some cases, see [Skopenkov2015a, \S1.3] for methods of their calculations.

Abelian group structures on E^m(D^p\times S^q) for m\ge q+3 is defined analogously to the well-known case p=0. The sum operation on E^m(D^p\times S^q) is `connected sum of q-spheres together with normal p-framings' or `D^p-parametric connected sum'. Define E^m_U(S^q\sqcup S^n) \subset E^m_D(S^q\sqcup S^n) to be the subgroup of links all whose components are unknotted. Let \lambda=\lambda^m_{q,n}:E^m_D(S^q\sqcup S^n)\to\pi_q(S^{m-n-1}) be the linking coefficient. Denote K^m_{q,n}:=\ker\lambda\cap E^m_U(S^q\sqcup S^n).

Conjecture 4.4. (a) If 2m\ge p+3q+4, then \tau\oplus_i\#:\pi_q(V_{m-q,p+1})\oplus E^m_D(S^{p+q})\to KT^m_{p,q,D} is an isomorphism.

(b) For m\ge2p+q+3

\displaystyle KT^m_{p,q}\cong E^m_D(D^{p+1}\times S^q)\oplus K^m_{q,p+q}\oplus E^m_D(S^{p+q}).

For a discussion see [Skopenkov2015a, Remark 1.9].

Denote by TG the torsion subgroup of an abelian group G.

Theorem 4.5 [Skopenkov2015, Corollary 1.7], [Skopenkov2015a, Corollary 1.4]. Assume that m\ge 2p+q+3.

(a) KT^m_{D,p,q}\otimes\Q\cong[\pi_q(V_{m-q,p+1})\oplus E^m_D(S^q)\oplus K^m_{q,p+q}\oplus E^m_D(S^{p+q})]\otimes\Q.

(b) |KT^m_{D,p,q}|=|E^m_D(D^{p+1}\times S^q)|\cdot|K^m_{q,p+q}|\cdot|E^m_D(S^{p+q})| (more precisely, whenever one part is finite, the other is finite and they are equal).

(c) |TKT^m_{D,p,q}|=|TE^m_D(D^{p+1}\times S^q)|\cdot|TK^m_{q,p+q}|\cdot|TE^m_D(S^{p+q})|, unless m=6k+p and q=4k-1 for some k.

The above results were obtained using more `theoretical' results [Skopenkov2015, Theorem 1.6], [Skopenkov2015a, Theorem 1.2], see also [Cencelj&Repovš&Skopenkov2008, Theorem 2.1].

5 References

]{Crowley&Skopenkov2008}. {{beginthm|Lemma|\cite[Smoothing Lemma 1.1]{Skopenkov2015a}}}\label{t:smo} For $m\ge2p+q+3$ the map $$q_\#\oplus\overline{\sigma}:KT^m_{p,q,D}\to KT^m_{p,q,\#}\oplus E^m_D(S^{p+q})$$ is an isomorphism. {{endthm}}
== Classification == ; From [[Embeddings_in_Euclidean_space:_an_introduction_to_their_classification#Unknotting theorems|the Haefliger-Zeeman Isotopy Theorem]] it follows that $E^m(S^p\times S^q)=0$ for $p\le q$ and $m\ge p+2q+2$, provided that $m\ge p+q+3$ or m\ge3(p+q)+4$ in the PL or smooth category, respectively. The dimension restriction in this result is sharp by the example of [[Embeddings just below the stable range: classification#Examples|Hudson tori]]. We have the following table for m\ge3q+6$ and for m\ge3q+7$, for the PL and smooth categories, respectively. $$\begin{array}{c|c|c|c|c|c|c|c|c} m &\ge2q+3 &2q+2 &2q+1 &2q &2q-1 &2q-2&2q-3\ \hline KT^m_{1,q},\ q\text{ even}&0 &\Z &2 &2^2&2^2 &24 &0\ \hline KT^m_{1,q},\ q\text{ odd} &0 &2 &\Z\oplus2 &4 &2\oplus24&2 &0 \end{array}$$ Here $n$ is short for $\Z_n$. The table follows from the theorems below. We also have $|KT^{10}_{1,5}|=4$ and $KT^{11}_{1,6}\cong\Z_2\oplus\Z\oplus E^{11}_D(S^7)$, of which $E^{11}_D(S^7)$ is rank one infinite \cite{Skopenkov2015a}. There is a finiteness criterion for $KT^m_{D,p,q}$ when $m\ge2p+q+3$ \cite[Theorem 1.4]{Skopenkov2015}. The formulation is not so short but effective. This criterion is a corollary of Theorem \ref{t:cornum} below. {{beginthm|Theorem}}\label{kt1} There are isomorphisms, or, for $p\in\{q,q-1\}$, 1-1 correspondences $$KT^{p+2q+1}_{p,q,PL}\to\left\{\begin{array}{cc} \Zz_{\varepsilon(q)} & \quad 1\le p The isomorphisms and 1-1 correspondences are given by [[Embeddings_just_below_the_stable_range:_classification#The_Whitney_invariant|the Whitney invariant]] \cite{Skopenkov2016e}. We have l-1+2\cdot2l+1=6l$; a description of $KT^{6l}_{2l-1,2l,D}$ is given in \cite[end of $\S.3]{Skopenkov2016e}. Theorem \ref{kt1} can be generalized as follows. {{beginthm|Theorem}}\label{kt} (a) If $m\ge2p+q+3$ and m\ge3q+2p+4$, then $$\tau:\pi_q(V_{m-q,p+1})\to KT^m_{p,q,PL}\quad\text{and}\quad \tau\oplus_i\#:\pi_q(V_{m-q,p+1})\oplus E^m_D(S^{p+q})\to KT^m_{p,q,D}$$ are isomorphisms. (b) If $q\le2p$, then $$\tau:\pi_q(V_{2p+2,p+1})\to KT^{2p+q+2}_{p,q,PL}$$ is a 1-1 correspondence. (c) If m\ge3q+2p+4$, then there is a 1-1 correspondence $$KT^m_{p,q,PL}\to\pi_q(V_{m-q,p+1})\oplus\pi_p(V_{m-p,q+1}).$$ {{endthm}} This follows for $m\ge 2q+3$ from [[Embeddings_just_below_the_stable_range:_classification#Classification_further_below_the_stable_range|the Becker-Glover Theorem 5.3]]. For the general case see \cite[Corollary 1.5.a]{Skopenkov2002}. The 1-1 correspondence is constructed using `the Haefliger-Wu invariant' involving configuration space of distinct pairs. For $m\ge2p+q+3$ there is an alternative direct proof of (a) \cite{Skopenkov2006}, \cite{Skopenkov2015a}, but for $m\le2p+q+2$ no proof of Theorem \ref{kt}.(b)(c) without referring to `the Haefliger-Wu invariant' is known. For $m\ge2p+q+2$ we have $\pi_p(V_{m-p,q+1})=0$, so part (c) reduces to part (b) and the PL case of part (a). {{beginthm|Theorem|\cite{Skopenkov2015a}}}\label{t:cornum} Assume that $m\ge 2p+q+3$. (a) If m\ge p+3q+4$, then $E^m_\#(S^p\times S^q)$ and $\pi_q(V_{m-q,p+1})$ have isomorphic subgroups with isomorphic quotients. (b) If m\ge 3q+4$, then $E^m_\#(S^p\times S^q)$ has a subgroup isomorphic to $\pi_{p+2q+2-m}(V_{M+m-q-1,M})$ ($M$ large), whose quotient and $\pi_q(V_{m-q,p+1})$ have isomorphic subgroups with isomorphic quotients. {{endthm}} The following conjecture and results reduce description of $KT^m_{p,q,D}$ to description of objects which are easier to calculate, at least in some cases, see \cite[$\SS^p\times S^q\to\Rr^m, i.e. knotted tori. See Hudson tori, [Alexander1924], [Milgram&Rees1971], [Kosinski1961], [Hudson1963], [Wall1965], [Tindell1969], [Boechat&Haefliger1970], [Boechat1971], [Milgram&Rees1971], [Lucas&Saeki2002], [Skopenkov2002]. A classification of knotted tori is a natural next step (after the link theory [Haefliger1966a] and the classification of embeddings of highly-connected manifolds) towards classification of embeddings of arbitrary manifolds. Since the general Knotting Problem is very hard, it is very interesting to solve it for the important particular case of knotted tori. Recent classification results for knotted tori [Skopenkov2006a], [Cencelj&Repovš&Skopenkov2007], [Cencelj&Repovš&Skopenkov2008], [Skopenkov2015], [Skopenkov2015a] give some insight or even precise information concerning arbitrary manifolds (cf. [Skopenkov2007], [Skopenkov2010], [Skopenkov2014]) and reveals new interesting relations to algebraic topology.

For a general introduction to embeddings as well as the notation and conventions used on this page, we refer to [Skopenkov2016c, \S1, \S3]. We assume that p\le q. Denote

\displaystyle KT^m_{p,q,CAT}:=E^m_{CAT}(S^p\times S^q).

2 Examples

An S^p-parametric connected sum group structure on KT^m_{p,q} is constructed for m\ge2p+q+3 in [Skopenkov2006], [Skopenkov2015a].

One of the first examples were Hudson tori.

Let us construct a map

\displaystyle \tau:\pi_q(V_{m-q,p+1})\to KT^m_{p,q}.

Recall that \pi_q(V_{m-q,p+1}) is isomorphic to the group of smooth maps S^q\to V_{m-q,p+1} up to smooth homotopy. The latter maps can be considered as smooth maps \varphi:S^q\times S^p\to\partial D^{m-q}. Define the smooth embedding \tau(\varphi) as the composition

Tex syntax error
Here
Tex syntax error
is the projection onto the second factor and \subset is the standard inclusion.

Clearly, \tau is well-defined and, for m\ge2p+q+3, is a homomorphism.

Define the `embedded connected sum' or `local knotting' map

Tex syntax error
Clearly,
Tex syntax error
is well-defined and, for m\ge2p+q+3, is a homomorphism.

See construction of another map in [Skopenkov2015, \S3, definition of \sigma^*].

3 Reduction to classification modulo knots

Let KT^m_{p,q,\#} be the quotient set of KT^m_{p,q,D} by the embedded connected sum action, i.e.
Tex syntax error
. Let q_\#:KT^m_{p,q,D}\to KT^m_{p,q,\#} be the quotient map.

For m\ge2p+q+3 a group structure on KT^m_{p,q,\#} is well-defined by q_{\#}f+q_{\#}f':=q_{\#}(f+f'), f,f'\in KT^m_{p,q,D}.

For m\ge2p+q+3 the map \overline{\sigma}:KT^m_{p,q,D}\to E^m(S^{p+q}) constructed by `embedded surgery of S^p\times*' is well-defined [Skopenkov2015a, \S3.3]. Clearly,
Tex syntax error
.

The following result reduces description of KT^m_{p,q,D} to description of E^m_D(S^{p+q}) and of KT^m_{p,q,\#}, cf. [Schmidt1971], [Crowley&Skopenkov2008, end of \S1].

Lemma 3.1 [Skopenkov2015a, Smoothing Lemma 1.1]. For m\ge2p+q+3 the map

\displaystyle q_\#\oplus\overline{\sigma}:KT^m_{p,q,D}\to KT^m_{p,q,\#}\oplus E^m_D(S^{p+q})
is an isomorphism.

4 Classification

From the Haefliger-Zeeman Isotopy Theorem it follows that E^m(S^p\times S^q)=0 for p\le q and m\ge p+2q+2, provided that m\ge p+q+3 or 2m\ge3(p+q)+4 in the PL or smooth category, respectively. The dimension restriction in this result is sharp by the example of Hudson tori.

We have the following table for 2m\ge3q+6 and for 2m\ge3q+7, for the PL and smooth categories, respectively.

\displaystyle \begin{array}{c|c|c|c|c|c|c|c|c} m                         &\ge2q+3 &2q+2 &2q+1      &2q &2q-1     &2q-2&2q-3\\ \hline KT^m_{1,q},\ q\text{ even}&0       &\Z   &2         &2^2&2^2      &24  &0\\ \hline KT^m_{1,q},\ q\text{ odd} &0       &2    &\Z\oplus2 &4  &2\oplus24&2   &0 \end{array}

Here n is short for \Z_n. The table follows from the theorems below.

We also have |KT^{10}_{1,5}|=4 and KT^{11}_{1,6}\cong\Z_2\oplus\Z\oplus E^{11}_D(S^7), of which E^{11}_D(S^7) is rank one infinite [Skopenkov2015a].

There is a finiteness criterion for KT^m_{D,p,q} when m\ge2p+q+3 [Skopenkov2015, Theorem 1.4]. The formulation is not so short but effective. This criterion is a corollary of Theorem 4.5 below.

Theorem 4.1. There are isomorphisms, or, for p\in\{q,q-1\}, 1-1 correspondences

\displaystyle KT^{p+2q+1}_{p,q,PL}\to\left\{\begin{array}{cc} \Zz_{\varepsilon(q)} & \quad 1\le p<q \\ \Zz_{\varepsilon(q)}\oplus\Zz_{\varepsilon(q)}&\quad 2\le p=q\end{array}\right. \qquad\text{and} \qquad KT^{p+2q+1}_{p,q,D}\to\Zz_{\varepsilon(q)}\quad\text{for}\quad 1\le p\le q-2.

The isomorphisms and 1-1 correspondences are given by the Whitney invariant [Skopenkov2016e].

We have 2l-1+2\cdot2l+1=6l; a description of KT^{6l}_{2l-1,2l,D} is given in [Skopenkov2016e, end of \S6.3].

Theorem 4.1 can be generalized as follows.

Theorem 4.2. (a) If m\ge2p+q+3 and 2m\ge3q+2p+4, then

\displaystyle \tau:\pi_q(V_{m-q,p+1})\to KT^m_{p,q,PL}\quad\text{and}\quad \tau\oplus_i\#:\pi_q(V_{m-q,p+1})\oplus E^m_D(S^{p+q})\to KT^m_{p,q,D}

are isomorphisms.

(b) If q\le2p, then

\displaystyle \tau:\pi_q(V_{2p+2,p+1})\to KT^{2p+q+2}_{p,q,PL}
is a 1-1 correspondence.

(c) If 2m\ge3q+2p+4, then there is a 1-1 correspondence

\displaystyle KT^m_{p,q,PL}\to\pi_q(V_{m-q,p+1})\oplus\pi_p(V_{m-p,q+1}).

This follows for m\ge 2q+3 from the Becker-Glover Theorem 5.3. For the general case see [Skopenkov2002, Corollary 1.5.a]. The 1-1 correspondence is constructed using `the Haefliger-Wu invariant' involving configuration space of distinct pairs. For m\ge2p+q+3 there is an alternative direct proof of (a) [Skopenkov2006], [Skopenkov2015a], but for m\le2p+q+2 no proof of Theorem 4.2.(b)(c) without referring to `the Haefliger-Wu invariant' is known.

For m\ge2p+q+2 we have \pi_p(V_{m-p,q+1})=0, so part (c) reduces to part (b) and the PL case of part (a).

Theorem 4.3 [Skopenkov2015a, Corollary 1.5.bd]. Assume that m\ge 2p+q+3.

(a) If 2m\ge p+3q+4, then KT^m_{p,q,\#} and \pi_q(V_{m-q,p+1}) have isomorphic subgroups with isomorphic quotients.

(b) If 2m\ge 3q+4, then KT^m_{p,q,\#} has a subgroup isomorphic to \pi_{p+2q+2-m}(V_{M+m-q-1,M}) (M large), whose quotient and \pi_q(V_{m-q,p+1}) have isomorphic subgroups with isomorphic quotients.

The following conjecture and results reduce description of KT^m_{p,q,D} to description of objects which are easier to calculate, at least in some cases, see [Skopenkov2015a, \S1.3] for methods of their calculations.

Abelian group structures on E^m(D^p\times S^q) for m\ge q+3 is defined analogously to the well-known case p=0. The sum operation on E^m(D^p\times S^q) is `connected sum of q-spheres together with normal p-framings' or `D^p-parametric connected sum'. Define E^m_U(S^q\sqcup S^n) \subset E^m_D(S^q\sqcup S^n) to be the subgroup of links all whose components are unknotted. Let \lambda=\lambda^m_{q,n}:E^m_D(S^q\sqcup S^n)\to\pi_q(S^{m-n-1}) be the linking coefficient. Denote K^m_{q,n}:=\ker\lambda\cap E^m_U(S^q\sqcup S^n).

Conjecture 4.4. (a) If 2m\ge p+3q+4, then \tau\oplus_i\#:\pi_q(V_{m-q,p+1})\oplus E^m_D(S^{p+q})\to KT^m_{p,q,D} is an isomorphism.

(b) For m\ge2p+q+3

\displaystyle KT^m_{p,q}\cong E^m_D(D^{p+1}\times S^q)\oplus K^m_{q,p+q}\oplus E^m_D(S^{p+q}).

For a discussion see [Skopenkov2015a, Remark 1.9].

Denote by TG the torsion subgroup of an abelian group G.

Theorem 4.5 [Skopenkov2015, Corollary 1.7], [Skopenkov2015a, Corollary 1.4]. Assume that m\ge 2p+q+3.

(a) KT^m_{D,p,q}\otimes\Q\cong[\pi_q(V_{m-q,p+1})\oplus E^m_D(S^q)\oplus K^m_{q,p+q}\oplus E^m_D(S^{p+q})]\otimes\Q.

(b) |KT^m_{D,p,q}|=|E^m_D(D^{p+1}\times S^q)|\cdot|K^m_{q,p+q}|\cdot|E^m_D(S^{p+q})| (more precisely, whenever one part is finite, the other is finite and they are equal).

(c) |TKT^m_{D,p,q}|=|TE^m_D(D^{p+1}\times S^q)|\cdot|TK^m_{q,p+q}|\cdot|TE^m_D(S^{p+q})|, unless m=6k+p and q=4k-1 for some k.

The above results were obtained using more `theoretical' results [Skopenkov2015, Theorem 1.6], [Skopenkov2015a, Theorem 1.2], see also [Cencelj&Repovš&Skopenkov2008, Theorem 2.1].

5 References

.3]{Skopenkov2015a} for methods of their calculations. Abelian group structures on $E^m(D^p\times S^q)$ for $m\ge q+3$ is defined analogously to the well-known case $p=0$. The sum operation on $E^m(D^p\times S^q)$ is `connected sum of $q$-spheres together with normal $p$-framings' or `$D^p$-parametric connected sum'. Define $E^m_U(S^q\sqcup S^n) \subset E^m_D(S^q\sqcup S^n)$ to be the subgroup of links all whose components are unknotted. Let $\lambda=\lambda^m_{q,n}:E^m_D(S^q\sqcup S^n)\to\pi_q(S^{m-n-1})$ be the [[High_codimension_links#The_linking_coefficient|linking coefficient]]. Denote $K^m_{q,n}:=\ker\lambda\cap E^m_U(S^q\sqcup S^n)$. {{beginthm|Conjecture}}\label{t:conj} For $m\ge2p+q+3$ $$KT^m_{p,q}\cong E^m_D(D^{p+1}\times S^q)\oplus K^m_{q,p+q}\oplus E^m_D(S^{p+q}).$$ {{endthm}} For a discussion see \cite[Remark 1.9]{Skopenkov2015a}. Denote by $TG$ the torsion subgroup of an abelian group $G$. {{beginthm|Theorem|\cite[Corollary 1.7]{Skopenkov2015}, \cite{Skopenkov2015a}}}\label{t:cornum} Assume that $m\ge 2p+q+3$. (a) $KT^m_{D,p,q}\otimes\Q\cong[\pi_q(V_{m-q,p+1})\oplus E^m_D(S^q)\oplus K^m_{q,p+q}\oplus E^m_D(S^{p+q})]\otimes\Q$. (b) $|KT^m_{D,p,q}|=|E^m_D(D^{p+1}\times S^q)|\cdot|K^m_{q,p+q}|\cdot|E^m_D(S^{p+q})|$ (more precisely, whenever one part is finite, the other is finite and they are equal). (c) $|TKT^m_{D,p,q}|=|TE^m_D(D^{p+1}\times S^q)|\cdot|TK^m_{q,p+q}|\cdot|TE^m_D(S^{p+q})|$, unless $m=6k+p$ and $q=4k-1$ for some $k$. {{endthm}} The above results were obtained using more `theoretical' results \cite[Theorem 1.6]{Skopenkov2015}, \cite[Theorem 1.2]{Skopenkov2015a}, see also \cite[Theorem 2.1]{Cencelj&Repovš&Skopenkov2008}.
== References == {{#RefList:}} [[Category:Manifolds]] [[Category:Embeddings of manifolds]]S^p\times S^q\to\Rr^m, i.e. knotted tori. See Hudson tori, [Alexander1924], [Milgram&Rees1971], [Kosinski1961], [Hudson1963], [Wall1965], [Tindell1969], [Boechat&Haefliger1970], [Boechat1971], [Milgram&Rees1971], [Lucas&Saeki2002], [Skopenkov2002]. A classification of knotted tori is a natural next step (after the link theory [Haefliger1966a] and the classification of embeddings of highly-connected manifolds) towards classification of embeddings of arbitrary manifolds. Since the general Knotting Problem is very hard, it is very interesting to solve it for the important particular case of knotted tori. Recent classification results for knotted tori [Skopenkov2006a], [Cencelj&Repovš&Skopenkov2007], [Cencelj&Repovš&Skopenkov2008], [Skopenkov2015], [Skopenkov2015a] give some insight or even precise information concerning arbitrary manifolds (cf. [Skopenkov2007], [Skopenkov2010], [Skopenkov2014]) and reveals new interesting relations to algebraic topology.

For a general introduction to embeddings as well as the notation and conventions used on this page, we refer to [Skopenkov2016c, \S1, \S3]. We assume that p\le q. Denote

\displaystyle KT^m_{p,q,CAT}:=E^m_{CAT}(S^p\times S^q).

2 Examples

An S^p-parametric connected sum group structure on KT^m_{p,q} is constructed for m\ge2p+q+3 in [Skopenkov2006], [Skopenkov2015a].

One of the first examples were Hudson tori.

Let us construct a map

\displaystyle \tau:\pi_q(V_{m-q,p+1})\to KT^m_{p,q}.

Recall that \pi_q(V_{m-q,p+1}) is isomorphic to the group of smooth maps S^q\to V_{m-q,p+1} up to smooth homotopy. The latter maps can be considered as smooth maps \varphi:S^q\times S^p\to\partial D^{m-q}. Define the smooth embedding \tau(\varphi) as the composition

Tex syntax error
Here
Tex syntax error
is the projection onto the second factor and \subset is the standard inclusion.

Clearly, \tau is well-defined and, for m\ge2p+q+3, is a homomorphism.

Define the `embedded connected sum' or `local knotting' map

Tex syntax error
Clearly,
Tex syntax error
is well-defined and, for m\ge2p+q+3, is a homomorphism.

See construction of another map in [Skopenkov2015, \S3, definition of \sigma^*].

3 Reduction to classification modulo knots

Let KT^m_{p,q,\#} be the quotient set of KT^m_{p,q,D} by the embedded connected sum action, i.e.
Tex syntax error
. Let q_\#:KT^m_{p,q,D}\to KT^m_{p,q,\#} be the quotient map.

For m\ge2p+q+3 a group structure on KT^m_{p,q,\#} is well-defined by q_{\#}f+q_{\#}f':=q_{\#}(f+f'), f,f'\in KT^m_{p,q,D}.

For m\ge2p+q+3 the map \overline{\sigma}:KT^m_{p,q,D}\to E^m(S^{p+q}) constructed by `embedded surgery of S^p\times*' is well-defined [Skopenkov2015a, \S3.3]. Clearly,
Tex syntax error
.

The following result reduces description of KT^m_{p,q,D} to description of E^m_D(S^{p+q}) and of KT^m_{p,q,\#}, cf. [Schmidt1971], [Crowley&Skopenkov2008, end of \S1].

Lemma 3.1 [Skopenkov2015a, Smoothing Lemma 1.1]. For m\ge2p+q+3 the map

\displaystyle q_\#\oplus\overline{\sigma}:KT^m_{p,q,D}\to KT^m_{p,q,\#}\oplus E^m_D(S^{p+q})
is an isomorphism.

4 Classification

From the Haefliger-Zeeman Isotopy Theorem it follows that E^m(S^p\times S^q)=0 for p\le q and m\ge p+2q+2, provided that m\ge p+q+3 or 2m\ge3(p+q)+4 in the PL or smooth category, respectively. The dimension restriction in this result is sharp by the example of Hudson tori.

We have the following table for 2m\ge3q+6 and for 2m\ge3q+7, for the PL and smooth categories, respectively.

\displaystyle \begin{array}{c|c|c|c|c|c|c|c|c} m                         &\ge2q+3 &2q+2 &2q+1      &2q &2q-1     &2q-2&2q-3\\ \hline KT^m_{1,q},\ q\text{ even}&0       &\Z   &2         &2^2&2^2      &24  &0\\ \hline KT^m_{1,q},\ q\text{ odd} &0       &2    &\Z\oplus2 &4  &2\oplus24&2   &0 \end{array}

Here n is short for \Z_n. The table follows from the theorems below.

We also have |KT^{10}_{1,5}|=4 and KT^{11}_{1,6}\cong\Z_2\oplus\Z\oplus E^{11}_D(S^7), of which E^{11}_D(S^7) is rank one infinite [Skopenkov2015a].

There is a finiteness criterion for KT^m_{D,p,q} when m\ge2p+q+3 [Skopenkov2015, Theorem 1.4]. The formulation is not so short but effective. This criterion is a corollary of Theorem 4.5 below.

Theorem 4.1. There are isomorphisms, or, for p\in\{q,q-1\}, 1-1 correspondences

\displaystyle KT^{p+2q+1}_{p,q,PL}\to\left\{\begin{array}{cc} \Zz_{\varepsilon(q)} & \quad 1\le p<q \\ \Zz_{\varepsilon(q)}\oplus\Zz_{\varepsilon(q)}&\quad 2\le p=q\end{array}\right. \qquad\text{and} \qquad KT^{p+2q+1}_{p,q,D}\to\Zz_{\varepsilon(q)}\quad\text{for}\quad 1\le p\le q-2.

The isomorphisms and 1-1 correspondences are given by the Whitney invariant [Skopenkov2016e].

We have 2l-1+2\cdot2l+1=6l; a description of KT^{6l}_{2l-1,2l,D} is given in [Skopenkov2016e, end of \S6.3].

Theorem 4.1 can be generalized as follows.

Theorem 4.2. (a) If m\ge2p+q+3 and 2m\ge3q+2p+4, then

\displaystyle \tau:\pi_q(V_{m-q,p+1})\to KT^m_{p,q,PL}\quad\text{and}\quad \tau\oplus_i\#:\pi_q(V_{m-q,p+1})\oplus E^m_D(S^{p+q})\to KT^m_{p,q,D}

are isomorphisms.

(b) If q\le2p, then

\displaystyle \tau:\pi_q(V_{2p+2,p+1})\to KT^{2p+q+2}_{p,q,PL}
is a 1-1 correspondence.

(c) If 2m\ge3q+2p+4, then there is a 1-1 correspondence

\displaystyle KT^m_{p,q,PL}\to\pi_q(V_{m-q,p+1})\oplus\pi_p(V_{m-p,q+1}).

This follows for m\ge 2q+3 from the Becker-Glover Theorem 5.3. For the general case see [Skopenkov2002, Corollary 1.5.a]. The 1-1 correspondence is constructed using `the Haefliger-Wu invariant' involving configuration space of distinct pairs. For m\ge2p+q+3 there is an alternative direct proof of (a) [Skopenkov2006], [Skopenkov2015a], but for m\le2p+q+2 no proof of Theorem 4.2.(b)(c) without referring to `the Haefliger-Wu invariant' is known.

For m\ge2p+q+2 we have \pi_p(V_{m-p,q+1})=0, so part (c) reduces to part (b) and the PL case of part (a).

Theorem 4.3 [Skopenkov2015a, Corollary 1.5.bd]. Assume that m\ge 2p+q+3.

(a) If 2m\ge p+3q+4, then KT^m_{p,q,\#} and \pi_q(V_{m-q,p+1}) have isomorphic subgroups with isomorphic quotients.

(b) If 2m\ge 3q+4, then KT^m_{p,q,\#} has a subgroup isomorphic to \pi_{p+2q+2-m}(V_{M+m-q-1,M}) (M large), whose quotient and \pi_q(V_{m-q,p+1}) have isomorphic subgroups with isomorphic quotients.

The following conjecture and results reduce description of KT^m_{p,q,D} to description of objects which are easier to calculate, at least in some cases, see [Skopenkov2015a, \S1.3] for methods of their calculations.

Abelian group structures on E^m(D^p\times S^q) for m\ge q+3 is defined analogously to the well-known case p=0. The sum operation on E^m(D^p\times S^q) is `connected sum of q-spheres together with normal p-framings' or `D^p-parametric connected sum'. Define E^m_U(S^q\sqcup S^n) \subset E^m_D(S^q\sqcup S^n) to be the subgroup of links all whose components are unknotted. Let \lambda=\lambda^m_{q,n}:E^m_D(S^q\sqcup S^n)\to\pi_q(S^{m-n-1}) be the linking coefficient. Denote K^m_{q,n}:=\ker\lambda\cap E^m_U(S^q\sqcup S^n).

Conjecture 4.4. (a) If 2m\ge p+3q+4, then \tau\oplus_i\#:\pi_q(V_{m-q,p+1})\oplus E^m_D(S^{p+q})\to KT^m_{p,q,D} is an isomorphism.

(b) For m\ge2p+q+3

\displaystyle KT^m_{p,q}\cong E^m_D(D^{p+1}\times S^q)\oplus K^m_{q,p+q}\oplus E^m_D(S^{p+q}).

For a discussion see [Skopenkov2015a, Remark 1.9].

Denote by TG the torsion subgroup of an abelian group G.

Theorem 4.5 [Skopenkov2015, Corollary 1.7], [Skopenkov2015a, Corollary 1.4]. Assume that m\ge 2p+q+3.

(a) KT^m_{D,p,q}\otimes\Q\cong[\pi_q(V_{m-q,p+1})\oplus E^m_D(S^q)\oplus K^m_{q,p+q}\oplus E^m_D(S^{p+q})]\otimes\Q.

(b) |KT^m_{D,p,q}|=|E^m_D(D^{p+1}\times S^q)|\cdot|K^m_{q,p+q}|\cdot|E^m_D(S^{p+q})| (more precisely, whenever one part is finite, the other is finite and they are equal).

(c) |TKT^m_{D,p,q}|=|TE^m_D(D^{p+1}\times S^q)|\cdot|TK^m_{q,p+q}|\cdot|TE^m_D(S^{p+q})|, unless m=6k+p and q=4k-1 for some k.

The above results were obtained using more `theoretical' results [Skopenkov2015, Theorem 1.6], [Skopenkov2015a, Theorem 1.2], see also [Cencelj&Repovš&Skopenkov2008, Theorem 2.1].

5 References

Personal tools
Namespaces
Variants
Actions
Navigation
Interaction
Toolbox