Intersection number of immersions

(Difference between revisions)
Jump to: navigation, search
Line 12: Line 12:
$$I_M=\lambda_M=\lambda: H_{n_1}(M)\times H_{n_2}(M) \to \Z$$
$$I_M=\lambda_M=\lambda: H_{n_1}(M)\times H_{n_2}(M) \to \Z$$
the [[Intersection_form#Definition|''homology intersection pairing (or product)'']] of $M$.
the [[Intersection_form#Definition|''homology intersection pairing (or product)'']] of $M$.
+
+
Let $N_i$ be oriented $n_i$-manifolds $(i=1,2)$.
+
The ''double point set'' of maps $f_i:N_i\to M$ $(i=1,2)$ is defined by
+
$$S_2(f_1,f_2) = \{(x_1,x_2)\in N_1\times N_2 | f_1(x_1) = f_2(x_2)\in M\} =
+
(f_1\times f_2)^{-1}(\Delta(M)),$$
+
where $\Delta(M) = \{(x,x)\in M\times M | x\in M\}$ the diagonal.
+
+
A double point $x=(x_1,x_2)\in S_2(f_1,f_2)$ of immersions $f_i:N_i\looparrowright M$ $(i=1,2)$ is ''transverse'' if the linear map
+
$$df(x) = df_1(x_1)\oplus df_2(x_2): \tau_{N_1}(x_1)\oplus \tau_{N_2}(x_2) \to \tau_M(f(x))$$
+
is an isomorphism.
+
Immersions $f_i:N_i\looparrowright M$ $(i=1,2)$ have ''transverse intersection'' (or are ''transverse'') if $S_2(f_1,f_2)$ is finite and every double point is transverse.
+
+
The ''index'', or the ''sign'' $I(x)\in\Z$ of a transverse double point $x=(x_1,x_2)\in S_2(f_1,f_2)$ is
+
$$I(x) = \left\{ \begin{array}{cc} +1, & \mathrm{if}\; df(x)\; \mathrm{preserves}\; \mathrm{orientations}\\ -1, & \mathrm{otherwise}.\end{array}\right.$$
{{beginthm|Theorem}}\label{t:algeo}
{{beginthm|Theorem}}\label{t:algeo}
For any immersions $f_1:N_1\looparrowright M$, $f_2:N_2\looparrowright M$ of oriented $n_1$- and $n_2$-manifolds the number $\lambda(f_{1*}[N_1],f_{2*}[N_2])$ equals to $\lambda^{\mathrm{geo}}(N_1,N_2)$ defined below.
+
For any transverse immersions $f_1:N_1\looparrowright M$, $f_2:N_2\looparrowright M$ of oriented $n_1$- and $n_2$-manifolds
+
$$\lambda(f_{1*}[N_1],f_{2*}[N_2])=\sum_{x\in S_2(f_1,f_2)}{I(x)}.$$
{{endthm}}
{{endthm}}
This this clasical fact is either a theorem or a definition depending on which definition of homology intersection pairing one accepts.
This this clasical fact is either a theorem or a definition depending on which definition of homology intersection pairing one accepts.
For a proof see \cite{Scorpan2005|Section 3.2} or \cite{Ranicki2002|Proposition 7.22}.
For a proof see \cite{Scorpan2005|Section 3.2} or \cite{Ranicki2002|Proposition 7.22}.
+
Unless this equality is a definition, the left- and right- hand sides of the equality can be called ''algebraic'' and ''geometric'' intersection number of $f_1$ and $f_2$.
The number $\lambda(f_{1*}[N_1],f_{2*}[N_2])$ can be called ''algebraic'' intersection number of $f_1$ and $f_2$.
+
<!--
<!--
+
$\lambda^{\mathrm{geo}}(N_1,N_2)$ defined below.
$\lambda^{\mathrm{alg}}(f_1,f_2)\in\Z$ $$\lambda^{\mathrm{alg}}(N_1,N_2) := \lambda((f_1)_*[N_1],(f_2)_*[N_2]).$$
$\lambda^{\mathrm{alg}}(f_1,f_2)\in\Z$ $$\lambda^{\mathrm{alg}}(N_1,N_2) := \lambda((f_1)_*[N_1],(f_2)_*[N_2]).$$
the homology intersection of the homology classes $(f_1)_*[N_1]\in H_{n_1}(M)$, $(f_2)_*[N_2]\in H_{n_2}(M)$:
the homology intersection of the homology classes $(f_1)_*[N_1]\in H_{n_1}(M)$, $(f_2)_*[N_2]\in H_{n_2}(M)$:
</wikitex>
==Alternative description==
==Alternative description==
<wikitex>;
-->
The ''double point set'' of maps $f_i:N_i\to M$ $(i=1,2)$ is defined by
$$S_2(f_1,f_2) = \{(x_1,x_2)\in N_1\times N_2 | f_1(x_1) = f_2(x_2)\in M\} = (f_1\times f_2)^{-1}(\Delta(M))$$
with $\Delta(M) = \{(x,x) | x\in M\}\subset M\times M$ the diagonal subspace.
A double point $x=(x_1,x_2)\in S_2(f_1,f_2)$ of immersions $f_i:N_i^{n_i} \looparrowright M^{n_1+n_2}$ $(i=1,2)$ is ''transverse'' if the linear map $$df(x) = (df_1(x_1),df_2(x_2)): \tau_{N_1}(x_1)\oplus \tau_{N_2}(x_2) \to \tau_M(f(x))$$ is an isomorphism.
Immersions $f_i:N_i\looparrowright M$ $(i=1,2)$ have ''transverse intersection'' (or are ''transverse'') if each double point is transverse and $S_2(f_1,f_2)$ is finite.
The ''index'', or the ''sign'' $I(x)\in\Z$ of a transverse double point $x=(x_1,x_2)\in S_2(f_1,f_2)$ is
$$I(x) = \left\{ \begin{array}{cc} +1, & \mathrm{if}\; df(x)\; \mathrm{preserves}\; \mathrm{orientations}\\ -1, & \mathrm{otherwise}.\end{array}\right.$$
The ''geometric'' intersection number of transverse immersions $f_i:N_i\looparrowright M$ $(i=1,2)$ is defined as
The ''geometric'' intersection number of transverse immersions $f_i:N_i\looparrowright M$ $(i=1,2)$ is defined as
$$\lambda^{\mathrm{geo}}(N_1,N_2) = \sum_{x\in S_2(f_1,f_2)}{I(x)}\in \Z.$$
$$\lambda^{\mathrm{geo}}(N_1,N_2) = \sum_{x\in S_2(f_1,f_2)}{I(x)}\in \Z.$$
</wikitex>
+
The algebraic and geometric intersection numbers agree,
+
<!-- The algebraic and geometric intersection numbers agree,
+
$$\lambda^{\mathrm{alg}}(N_1,N_2)=\lambda^{\mathrm{geo}}(N_1,N_2).$$ -->
$$\lambda^{\mathrm{alg}}(N_1,N_2)=\lambda^{\mathrm{geo}}(N_1,N_2).$$ -->
==References==
==References==

Revision as of 14:52, 2 April 2019

This page has not been refereed. The information given here might be incomplete or provisional.

1 Introduction

This page is based on [Ranicki2002], see also [Broecker&Jaenich1982, Excercise 14.9.6]. Let f_1:N_1^{n_1} \looparrowright M^{n_1+n_2}, f_2:N_2^{n_2} \looparrowright M^{n_1+n_2} be immersions of oriented manifolds in a connected oriented manifold. The intersection number \lambda([N_1],[N_2])\in\Z has both an algebraic and geometric formulation; roughly speaking it counts with sign the number of intersection points that the two immersions have. The intersection number is an obstruction to perturbing the immersions into being disjoint. When it vanishes this perturbation can often be achieved using the Whitney trick. The intersection number of immersions is closely related to the intersection form of a manifold (and so to the signature of a 4k-dimensional manifold) and to characteristic classes. These are important invariants used in the classification of manifolds.

2 Statement

Let M be a connected oriented manifold of dimension m=n_1+n_2 and

\displaystyle I_M=\lambda_M=\lambda: H_{n_1}(M)\times H_{n_2}(M) \to \Z

the homology intersection pairing (or product) of M.

Let N_i be oriented n_i-manifolds (i=1,2). The double point set of maps f_i:N_i\to M (i=1,2) is defined by

\displaystyle S_2(f_1,f_2) = \{(x_1,x_2)\in N_1\times N_2 | f_1(x_1) = f_2(x_2)\in M\} =  (f_1\times f_2)^{-1}(\Delta(M)),

where \Delta(M) = \{(x,x)\in M\times M | x\in M\} the diagonal.

A double point x=(x_1,x_2)\in S_2(f_1,f_2) of immersions f_i:N_i\looparrowright M (i=1,2) is transverse if the linear map

\displaystyle df(x) = df_1(x_1)\oplus df_2(x_2): \tau_{N_1}(x_1)\oplus \tau_{N_2}(x_2) \to \tau_M(f(x))

is an isomorphism. Immersions f_i:N_i\looparrowright M (i=1,2) have transverse intersection (or are transverse) if S_2(f_1,f_2) is finite and every double point is transverse.

The index, or the sign I(x)\in\Z of a transverse double point x=(x_1,x_2)\in S_2(f_1,f_2) is

\displaystyle I(x) = \left\{ \begin{array}{cc} +1, & \mathrm{if}\; df(x)\; \mathrm{preserves}\; \mathrm{orientations}\\ -1, & \mathrm{otherwise}.\end{array}\right.

Theorem 2.1. For any transverse immersions f_1:N_1\looparrowright M, f_2:N_2\looparrowright M of oriented n_1- and n_2-manifolds

\displaystyle \lambda(f_{1*}[N_1],f_{2*}[N_2])=\sum_{x\in S_2(f_1,f_2)}{I(x)}.

This this clasical fact is either a theorem or a definition depending on which definition of homology intersection pairing one accepts. For a proof see [Scorpan2005, Section 3.2] or [Ranicki2002, Proposition 7.22]. Unless this equality is a definition, the left- and right- hand sides of the equality can be called algebraic and geometric intersection number of f_1 and f_2.


References

Personal tools
Namespaces
Variants
Actions
Navigation
Interaction
Toolbox